## Homework \#9, Graded Answers <br> Chem20, Elementary Chemistry

8.29) Consider the unbalanced equation for the reaction of solid lead with silver nitrate.
a.) Balance the equation.
$\mathrm{Pb}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
b.) How many moles of silver nitrate are required to complete react with 9.3 moles of lead? 9.3 mols $\mathrm{Pb} \times \frac{2 \text { moles } \mathrm{AgNO}_{3}}{1 \text { mole } \mathrm{Pb}}=1 \underline{8} .6 \rightarrow 19$ moles $\mathrm{AgNO}_{3}$
c.) How many moles of Ag are formed by the complete reaction of 28.4 moles Pb ?
28.4 moles $\mathrm{Pb} \times \frac{2 \text { moles Ag }}{1 \mathrm{~mol} \mathrm{~Pb}}=56.8 \rightarrow 56.8$ moles Ag
8.62) Consider the reaction between sulfur trioxide and water. If $61.5 \mathrm{~g} \mathrm{SO}_{3}$ and 11.2 g of $\mathrm{H}_{2} \mathrm{O}$ react and $54.9 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ is collected, calculate the limiting reactant, theoretical yield, and percent yield for the reaction.

$$
\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

Calculate the molar masses for $\mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$.
$\mathrm{SO}_{3}=(1)(32.07 \mathrm{~g} / \mathrm{mol})+(3)(16.00 \mathrm{~g} / \mathrm{mol})=80.07 \mathrm{~g} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{O}=(2)(1.008 \mathrm{~g} / \mathrm{mol})+(1)(16.00 \mathrm{~g} / \mathrm{mol})=18.016 \mathrm{~g} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{SO}_{4}=(2)(1.008 \mathrm{~g} / \mathrm{mol})+(1)(32.07 \mathrm{~g} / \mathrm{mol})+(4)(16.00 \mathrm{~g} / \mathrm{mol})=98.016 \mathrm{~g} / \mathrm{mol}$
Convert g SO $3 \rightarrow \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$.
$61.5 \mathrm{~g} \mathrm{SO}_{3} \times \frac{1 \mathrm{~mole} \mathrm{SO}_{3}}{80.07 \mathrm{~g} \mathrm{SO}_{3}} \times \frac{1 \mathrm{~mole} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mole} \mathrm{SO}_{3}} \times \frac{98.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mole} \mathrm{H}_{2} \mathrm{SO}_{4}}=75.28 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
Convert $\mathrm{gH}_{2} \mathrm{O} \rightarrow \mathrm{g} \mathrm{H}_{2} \mathrm{SO}_{4}$
$11.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mole} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~mole} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mole}_{2} \mathrm{O}} \times \frac{98.106 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mole} \mathrm{H}_{2} \mathrm{SO}_{4}}=60 . \underline{9} 8 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
Since $\mathrm{H}_{2} \mathrm{O}$ produces fewer g product
Limiting Reactant: $\mathrm{H}_{2} \mathrm{O}$, Theoretical Yield: $61.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
percent yield $=\frac{54.9 \mathrm{~g}}{61.0 \mathrm{~g}} \times 100=90.0 \rightarrow 90.0 \%$ yield
8.69) Classify each process as exothermic or endothermic, and indicate the sign of $\Delta \mathrm{H}$.
a.) Butane gas burning in a lighter $\rightarrow$ exothermic, $-\Delta \mathrm{H}$ (releases heat)
b.) The reaction that occurs in the chemical cold packs used to ice athletic injuries endothermic, $+\Delta H$ (absorbs heat)
c.) The burning of wax in a candle $\rightarrow$ exothermic, $-\Delta H$ (releases heat)
8.76) The evaporation of water is endothermic:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}=+44.01 \mathrm{~kJ} / \mathrm{mol}
$$

What minimum mass of water (ing) has to evaporate to absorb 175 kJ of heat?
$175 \mathrm{~kJ} \times \frac{1 \mathrm{~mole}_{2} \mathrm{O}}{44.01 \mathrm{~kJ}} \times \frac{18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \text { mole H}_{2} \mathrm{O}}=71.63 \rightarrow 71.6 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
8.87) Hydrogen gas can be prepared in the laboratory by a single-displacement reaction in which solid zinc reacts with hydrochloric acid. How much zinc in grams is required to make 14.5 g of hydrogen gas through this reaction?
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
$14.5 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mole} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}} \times \frac{1 \text { mole } \mathrm{Zn}}{1 \text { mole }_{2}} \times \frac{65.39 \mathrm{~g} \mathrm{Zn}}{1 \text { mole Zn }}=47 \underline{0} .3 \rightarrow 4.70 \times 10^{2} \mathrm{~g} \mathrm{Zn}$

