
Quantum Numbers Chem12A, Organic Chemistry I

Quantum numbers work like *addresses* for electrons in an atom. To narrow down your intended recipient, you would write the state \rightarrow city \rightarrow street \rightarrow street number to tell the post office where to go. Quantum numbers work the same way: energy level \rightarrow type of orbital \rightarrow orientation of orbital \rightarrow orientation of electron. Every electron in an atom will have a unique set of quantum numbers in the form [n, l, m_k, m_s].

Principal Quantum Number $(n = 1, 2, 3, 4, ...\infty)$

The principal quantum number, **n**, defines the *energy level or shell* of the electron. It is the first quantum number that must be determined, as it defines the available values for all other quantum numbers. Think of Bohr's model for the atom; *n* defines the ring on which the electron resides.

The value of *n* tells you how many levels away from the nucleus the electron is. The *valence shell* of an atom is the **highest occupied shell** and is mathematically equivalent to the period of the element (i.e., H is in period 1, so the valence shell for H is n = 1).

Azimuthal (Angular Momentum) Quantum Number (I = 0, 1, 2, ...(n-1))The azimuthal, or angular momentum, quantum number, *I*, defines the *type* or *shape* of the orbital where the electron most probably resides. It is the second quantum number to be determined as its value relies only on *n* (i.e., if n = 2, then I = 0 or 1 since n - 1 = 1). Each type of orbital has a unique number of *nodes* (e.g., where the wave changes phases) which is mathematically equivalent to *I*.

If *I* = 0, the electron is in an **s-orbital** that has 0 nodes.

If *I* = 1, the electron is in a **p-orbital** that has 1 node.

If *I* = 2, the electron is in a **d-orbital** that has 2 nodes.

If *I* = 3, the electron is in an **f-orbital** that has 3 nodes.

s-orbital	p-orbital	d-orbital		f-orbital	
			-	-	

Magnetic Quantum Number (m_I = -/...0...+/)

The magnetic quantum number, m_l, defines the *orientation* of the orbital in which the electron inhabits. The number of m_l values is called the *degeneracy*, or the **number of orbitals in the atom that are at the same energy level**. Note that to have the same energy, the orbitals must be on the same energy level as well as be the same type of orbital (*n* and *l* values are equal). A 2s orbital is <u>not</u> degenerate (e.g., the same energy) with a 2p or a 1s orbital.

The m_l values are entirely dependent on the *l* values; each type of orbital has a set degeneracy.

For an *s*-orbital, $m_1 = 0$, and degeneracy = 1. For a *p*-orbital, $m_1 = -1$, 0, +1, and degeneracy = 3. For a *d*-orbital, $m_1 = -2$, -1, 0, +1, +2, and degeneracy = 5. For an *f*-orbital, $m_1 = -3$, -2, -1, 0, +1, +2, +3, and degeneracy = 7.

NOTE: A set of 2p orbitals and 3p orbitals may have the same degeneracy value, but they are **NOT** degenerate with each other. They both include three total orbitals, but they are not at the same energy: they have different *n* values.

Spin Quantum Number ($m_s = -\frac{1}{2}, +\frac{1}{2}$)

The spin quantum number, m_s , is completely independent of the values of *n*, *l*, and m_l . It is **always** + ½ for an electron who has its spin oriented *up*, and – ½ for an electron who has its spin oriented *down*. This means that there are only **two electrons allowed per orbital**, **no matter the energy level**, **shape**, **or orientation** (i.e., a 1s orbital holds 2 electrons, as does 4d orbital).

As of yet, we cannot determine whether an electron is pointed up or down, so it can be assumed **always** that $m_s = \pm \frac{1}{2}$

If n is:	then / can be:	so m _l is:	with a degeneracy of:	and m _s as:
1	0	0	1	- ½ , + ½
2	0	0	1	- ½ , + ½
	1	-1, 0, 1	3	- ½, +½
3	0	0	1	- ½ , + ½
	1	-1, 0, 1	3	- ½ , + ½
	2	-2, -1, 0, 1, 2	5	- ½ , + ½
4	0	0	1	- ½ , + ½
	1	-1, 0, 1	3	- ½ , + ½
	2	-2, -1, 0, 1, 2	5	- ½ , + ½
	3	-3, -2, -1, 0, 1, 2, 3	7	- 1/2 , + 1/2

TO SUMMARIZE: