Oxidation States ## Chem1A, General Chemistry I ## **OXIDATION STATE GUIDELINES** The sum of the oxidation states in a neutral molecule must equal **ZERO**. $$H_2O \rightarrow H = +1 \text{ o.s.}, O = -2 \text{ o.s.}, \text{ so } (2)(+1) + (1)(-2) = 0$$ The sum of the oxidation states in an ion must equal the **CHARGE** on that ion. $$SO_4^{2-} \rightarrow O = -2 \text{ o.s}$$, $S = +6 \text{ o.s}$, so $(1)(+6) + (4)(-2) = +6 - 8 = -2$ ## **OXIDATION NUMBERS** 1.) Pure elements (even polyatomics) are always **ZERO** unless a charge is explicitly written. Fe, $$Br_2$$, S_8 , $C_{60} = 0$ (but $Mg^{2+} = +2$ o.s.) 2.) Monatomic ions are always **EQUAL TO THEIR CHARGE**. $$K^+ = +1 ; Se^{2-} = -2$$ 3.) Any metal in a compound will always be **POSITIVE** and **EQUAL TO THE CHARGE** unless present as a pure element. NaF $$\rightarrow$$ Na⁺ = +1 o.s.; iron(II) oxide \rightarrow Fe²⁺ = +2 o.s.; Fe(s) \rightarrow Fe = 0 o.s. 4.) Fluorine is always -1 unless present as a pure element. $$CF_4 \rightarrow F^- = -1 \text{ o.s.}$$; $F_2 \rightarrow F = 0 \text{ o.s.}$ - 5.) Oxygen is always -2 unless bonded to F (Rule 4) or itself. - (-1 when a peroxide, $\mathbf{0}$ as O_2). $$H_2O \rightarrow O = -2 \text{ o.s.}$$; $OF_2 \rightarrow O = +2 \text{ o.s.}$; $H_2O_2 \rightarrow O = -1 \text{ o.s.}$ 6.) Hydrogen is **+1** when bonded to a non-metal but **-1** when bonded to a metal and **0** when bonded to itself. $$HBr \rightarrow H = +1 \text{ o.s.}$$; $NaH \rightarrow H = -1 \text{ o.s.}$; $H_2 \rightarrow H = 0 \text{ o.s.}$ 7.) Halogens are always -1 unless bonded to F, O, or themselves. NaCl $$\rightarrow$$ Cl⁻ = -1 o.s.; ClF₄ \rightarrow Cl = +4 o.s.; OCl₂ \rightarrow Cl = +1 o.s. 8.) All other elements take on whatever oxidation state required to satisfy the guidelines.