Oxidation States

Chem1A, General Chemistry I

OXIDATION STATE GUIDELINES

The sum of the oxidation states in a neutral molecule must equal **ZERO**.

$$H_2O \rightarrow H = +1 \text{ o.s.}, O = -2 \text{ o.s.}, \text{ so } (2)(+1) + (1)(-2) = 0$$

The sum of the oxidation states in an ion must equal the **CHARGE** on that ion.

$$SO_4^{2-} \rightarrow O = -2 \text{ o.s}$$
, $S = +6 \text{ o.s}$, so $(1)(+6) + (4)(-2) = +6 - 8 = -2$

OXIDATION NUMBERS

1.) Pure elements (even polyatomics) are always **ZERO** unless a charge is explicitly written.

Fe,
$$Br_2$$
, S_8 , $C_{60} = 0$ (but $Mg^{2+} = +2$ o.s.)

2.) Monatomic ions are always **EQUAL TO THEIR CHARGE**.

$$K^+ = +1 ; Se^{2-} = -2$$

3.) Any metal in a compound will always be **POSITIVE** and **EQUAL TO THE CHARGE** unless present as a pure element.

NaF
$$\rightarrow$$
 Na⁺ = +1 o.s.; iron(II) oxide \rightarrow Fe²⁺ = +2 o.s.; Fe(s) \rightarrow Fe = 0 o.s.

4.) Fluorine is always -1 unless present as a pure element.

$$CF_4 \rightarrow F^- = -1 \text{ o.s.}$$
; $F_2 \rightarrow F = 0 \text{ o.s.}$

- 5.) Oxygen is always -2 unless bonded to F (Rule 4) or itself.
- (-1 when a peroxide, $\mathbf{0}$ as O_2).

$$H_2O \rightarrow O = -2 \text{ o.s.}$$
; $OF_2 \rightarrow O = +2 \text{ o.s.}$; $H_2O_2 \rightarrow O = -1 \text{ o.s.}$

6.) Hydrogen is **+1** when bonded to a non-metal but **-1** when bonded to a metal and **0** when bonded to itself.

$$HBr \rightarrow H = +1 \text{ o.s.}$$
; $NaH \rightarrow H = -1 \text{ o.s.}$; $H_2 \rightarrow H = 0 \text{ o.s.}$

7.) Halogens are always -1 unless bonded to F, O, or themselves.

NaCl
$$\rightarrow$$
 Cl⁻ = -1 o.s.; ClF₄ \rightarrow Cl = +4 o.s.; OCl₂ \rightarrow Cl = +1 o.s.

8.) All other elements take on whatever oxidation state required to satisfy the guidelines.