Chem1A, General Chemistry I
1.) Dimethylhydrazine is a carbon-hydrogen-nitrogen compound used in rocket fuels. When complete combusted, a 0.505 g sample of dimethylhydrazine yields $0.741 \mathrm{~g} \mathrm{CO}_{2}$ and 0.605 g $\mathrm{H}_{2} \mathrm{O}$. The molecular weight for dimethylhydrazine is $60.099 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?
2.) A 293 mL sample of 2.1 M calcium chloride is mixed with 109 mL of 1.5 M sodium hydroxide. A double displacement reaction is observed to occur.
a.) Write the balanced molecular equation for this reaction.
b.) Write the total (complete) ionic equation for this reaction.
c.) Write the net ionic equation for this reaction.
d.) Determine the theoretical yield of solid product, in g (molar mass $=74.10 \mathrm{~g} / \mathrm{mol}$).
e.) What is the limiting reactant?
3.) Hydrogen can be produced by "water splitting" according to the following reaction:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

a.) What element is being oxidized?
b.) What element is being reduced?
c.) In a container, 0.0183 mols $\mathrm{H}_{2}(\mathrm{~g})$, and 0.0294 mols of $\mathrm{O}_{2}(\mathrm{~g})$ are held over water at $25^{\circ} \mathrm{C}$. The vapor pressure of water at this temperature is 23.5 mmHg . The total pressure inside the container is 892 mmHg . Calculate the partial pressure of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ in mmHg .
4.) A 1.620 g sample of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$, is completely burned in a bomb calorimeter, resulting in a temperature increase of $8.44^{\circ} \mathrm{C}$. If the heat of combustion of naphthalene is -5156 $\mathrm{kJ} / \mathrm{mol}$, calculate the heat capacity of the bomb calorimeter in $\mathrm{kJ} /{ }^{\circ} \mathrm{C}$.
5.) Calculate the change in internal energy ($\Delta \mathrm{E}$ or $\Delta \mathrm{U}$) for a gas that releases 32.5 kJ of heat and has 52.3 kJ of work done on it by the surroundings, in kJ.
6.) Use the following heats of formation to solve for the ΔH° for the below reaction.

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Compound	$\Delta \mathbf{H}_{\mathrm{f}}{ }^{\circ}$
$\mathrm{NH}_{3}(\mathrm{~g})$	$-46.19 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{NO}_{2}(\mathrm{~g})$	$33.84 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	$-285.83 \mathrm{~kJ} / \mathrm{mol}$

7.) A 1.231 g sample of an unknown gas is measured in a 250.0 mL container at 365.2 torr and 156.1 K . Calculate the molar mass of the unknown gas.
8.) Rank the following gases in terms of (a) increasing root mean square velocity and (b) decreasing rate of effusion at a constant temperature: $\mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{Ne}, \mathrm{Cl}_{2}, \mathrm{~N}_{2}, \mathrm{Xe}$.
a.)
b.)

