Chem1A, General Chemistry I

1.) Consider the following formation of carbon tetrachloride (CCI_4) gas, from methane (CH_4) and chlorine gas (CI_2). (35 pts)

$$CH_4$$
 (g) + 4 Cl_2 (g) \rightarrow CCl_4 (g) + 4 HCl (g) ΔH_{rxn} = -397.3 kJ/mol

Substance	ΔH_f (kJ/mol)
CH ₄ (g)	-74.81
Cl ₂ (g)	0
HCI (g)	-92.31

a.) Calculate the standard enthalpy of formation (ΔH_f) for CCl₄ (g) in kJ/mol using the above standard heats of formation.

Use
$$\Delta H_{rxn} = \sum m (\Delta H_f^{\circ} \text{ products}) - \sum n (\Delta H_f^{\circ} \text{ reactants})$$

-397.3 kJ/mol = [(4)(-92.31 kJ/mol) + (1)(x)] – [(1)(-74.81 kJ/mol) + (4)(0)]
-397.3 kJ/mol = [-369.24 kJ/mol + x] – [-74.81 kJ/mol]
-472.11 kJ/mol = -369.24 kJ/mol + x
-102.87 = x $\rightarrow \Delta H_f^{\circ}(CCl_4(g))$: -102.9 kJ/mol

b.) Calculate the bond energy (ΔH) for a single C-Cl bond in gas phase.

Bond Type	H–C	CI–CI	H–Cl
Bond Energy (kJ/mol)	414	243	431

Draw the Lewis structures for the compounds in the reaction.

```
Use \Delta H_{rxn} = [bonds broken] – [bonds formed]

-397.3 kJ/mol = [(4)(414 kJ/mol) + (4)(243 kJ/mol)] - [(4)(Cl-Cl) + (4)(431 kJ/mol)]

-397.3 kJ/mol = [(16<u>5</u>6 kJ/mol) + (97<u>2</u> kJ/mol)] - [(4)(x) + (17<u>2</u>4 kJ/mol)]

-397.3 kJ/mol = [26<u>2</u>8 kJ/mol] - [4x + 17<u>2</u>4 kJ/mol]

-13<u>0</u>1.3 kJ/mol = - 4x

x = 325.325 \rightarrow 325 kJ/mol
```

2.) Write any possible quantum number set for the following electrons described.

- a.) An electron in a first energy level s-orbital, spin up. [1, 0, 0, + ½]
- b.) An electron in a third energy level d-orbital, spin down. [3, 2, ±2, 1/2]
- c.) Any electron in a fifth energy level f-orbital of any spin. [5, 3, ±3, ± ½]
- 3.) The threshold frequency for indium (In) is 9.96×10^{14} s⁻¹.
 - a.) Calculate the energy of this frequency, in J.

Use E = hv, where h =
$$6.626 \times 10^{-34} \, \text{J} \cdot \text{s}$$
 and v = $9.96 \times 10^{14} \, \text{s}^{-1}$
E = $(6.626 \times 10^{-34} \, \text{J} \cdot \text{s})(9.96 \times 10^{14} \, \text{s}^{-1}) = 6.5\underline{9}9 \times 10^{-19} \rightarrow \textbf{6.60} \times \textbf{10}^{-19} \, \textbf{J}$

b.) What is the minimum wavelength of light required to eject an electron from In, in nm?

Use
$$c = \lambda \cdot v$$
, or $\lambda = c/v$, where $c = 2.998 \times 10^8$ m/s, and $v = 9.96 \times 10^{14}$ s⁻¹.
$$\lambda = \frac{2.998 \times 10^8 \text{ m/s}}{9.96 \times 10^{14} \text{ s}^{-1}} = 3.0\underline{1}0 \times 10^{-7} \text{ m} \times \frac{1 \text{ nm}}{10^{-9} \text{ m}} = 3.0\underline{1}0 \times 10^2 \rightarrow \textbf{3.01} \times \textbf{10}^2 \text{ or 301 nm}$$

c.) How many electrons would be ejected by 2.50 mJ of light with a wavelength of 2.15 \times 10⁻¹² m?

Convert 2.15 × 10⁻¹² m to J/photon, so 1 photon = 1 e⁻ ejected
$$E = \frac{(6.626 \times 10^{-34} \text{ J*s})(3.00 \times 10^{8\frac{m}{5}})}{2.15 \times 10^{-12} \text{ m}} = 9.2\underline{4}5 \times 10^{-14} \text{ J/photon}$$
2.50 mJ × $\frac{10^{-3} \text{ J}}{1 \text{ mJ}}$ × $\frac{1 \text{ photon}}{9.245 \times 10^{-14} \text{ J}}$ × $\frac{1 \text{ e}^{-}}{1 \text{ photon}} = 2.7\underline{0}3 \times 10^{10} \rightarrow \textbf{2.70} \times \textbf{10}^{10} \textbf{ e}^{-}$

- 4.) An electron in a hydrogen atom travels from n = 5 to n = 2. ($R_H = 1.097 \times 10^7 \text{ m}^{-1}$)
 - a.) Calculate the wavelength associated with this transition, in nm.

Use Rydberg's Equation:
$$1/\lambda = (R_H)[1/n_1^2 - 1/n_2^2]$$
 where $R_H = 1.097 \times 10^7$ m⁻¹, $n_1 = 2$, and $n_2 = 2$. $1/\lambda = (1.097 \times 10^7$ m⁻¹)[$(1/2^2) - (1/5^2)$]

$$1/\lambda = (1.097 \times 10^7 \text{ m}^{-1})[(1/2^2) - (1/5^2)]$$

 $1/\lambda = (1.097 \times 10^7 \text{ m}^{-1})[(1/4) - (1/25)]$
 $1/\lambda = (1.097 \times 10^7 \text{ m}^{-1})[0.21]$
 $1/\lambda = 230\underline{3}700 \text{ m} - 1$
 $\lambda = 4.34\underline{0}8 \times 10^{-7} \text{ m} \times \frac{1 \text{ nm}}{10^9 \text{ m}} = 4.34\underline{0}8 \times 10^2 \rightarrow \textbf{4.341} \times \textbf{10}^2 \text{ or 434.1 nm}$

b.) Is this energy being **emitted** or **absorbed**? **Emitted** (5 > 2, relaxing)

4.) Write the electron configuration for the following elements. (14 pts)

a.) Br <u>[Ar]4s²3d¹⁰4p⁵</u>	
b.) Pb $[Xe]6s^24f^{14}5d^{10}6p^2$	
c.) In [Kr]5s ² 4d ¹⁰ 5p ¹	
d.) Ba <u>[Xe]6s²</u>	
e.) Which will have the highest electron affinity?	Br (up and right)
f.) Which one will have the largest atomic radius?	Ba (down and left)
g.) Which will have the least metallic character?	Br (up and right)

- 5.) Draw the **MOST PLAUSIBLE** Lewis structure for the following molecules, including all possible **resonance structures** as well as **formal charges**. (16 pts)
 - a.) SO₃-2
 Total: (1)(6 e⁻) + (3)(6 e⁻) + 2 e⁻ = 26 total e⁻
 3 bonds x (2 e⁻) = 6 used e⁻
 20 needed e⁻, so 26 total 6 used 20 needed = 0, structure is plausible.
 S is period 3 and can have an expanded octet to minimize formal charges.

b.) O₃

Total: (3)(6 e^-) = 18 total e^- 2 bonds x (2 e^-) = 4 used e^- 16 needed e^- , so 18 total – 4 used – 16 needed = -2, need 1 multiple bond