Chem1A, General Chemistry I

1.) Use the following data to calculate the total heat absorbed, in kJ, by 238.5 mL of acetone (C_3H_6O) originally at 24.3°C and heated to 78.6°C.

Density (g/mL)	Specific heat capacity for liquid (J/g °C)	Specific heat capacity for vapor (J/g °C)	Heat of vaporization (kJ/mol)	Boiling Point (°C)
0.793	2.16	1.29	31.0	56.5

Use the volume and density to calculate the grams and mols of C₃H₆O present.

238.5 mL
$$C_3H_6O \times \frac{0.793 \text{ g acetone}}{1 \text{ mL acetone}} = 189.1 \text{ g } C_3H_6O \times \frac{1 \text{ mol acetone}}{58.078 \text{ g acetone}} = 3.256 \text{ mols } C_3H_6O$$

From 24.3°C
$$\rightarrow$$
 56.5°C (b.p.): changing temperature, use q = m C_s Δ T (for liquid) q = ?; m = 189.1 g; C_s = 2.16 J/g °C; Δ T = 56.5°C $-$ 24.3°C = 32.2 °C q = (189.1 g)(2.16 J/g °C)(32.2 °C) = 13152 J × $\frac{1 \text{ kJ}}{1000 \text{ J}}$ = 13.15 kJ From (I) \rightarrow (g) at 56.5 °C: changing phase, use Δ H vaporization Δ H vap = 31.0 kJ/mol; mols = 3.256 mols C₃H₆O 3.256 mols C₃H₆O × $\frac{31.0 \text{ kJ}}{1 \text{ mol acetone}}$ = 100.9 kJ From 56.5°C \rightarrow 78.6°C: changing temperature, use q = m C_s Δ T (for vapor) q = ?; m = 189.1 g; C_s = 1.29 J/g °C; Δ T = 78.6 °C $-$ 56.5°C = 22.1 °C q = (189.1 g)(1.29 J/g °C)(22.1 °C) = 5391 J × $\frac{1 \text{ kJ}}{1000 \text{ J}}$ = 5.391 kJ q total = 13.15 kJ + 100.9 kJ + 5.391 kJ = 119.4 \rightarrow **119 kJ**

- 2.) A typical brand of root beer contains $0.13\%~H_3PO_4$ by mass. Assume the density of the soda is 1.11~g/mL and that 1~oz. = 29.6~mL.
 - (A) How many mg of H₃PO₄ are present in one 12 oz. can?

Use 0.13%
$$H_3PO_4$$
 by mass as a conversion factor: 0.13 g $H_3PO_4/100$ g solution 12 oz. solution $\times \frac{29.6 \text{ mL}}{1 \text{ oz.}} \times \frac{1.11 \text{ g solution}}{1 \text{ mL}} \times \frac{0.13 \text{ g } H_3PO_4}{100 \text{ g solution}} \times \frac{1000 \text{ mg}}{1 \text{ g}} = 5\underline{1}2 \text{ mg} \rightarrow 510 \text{ mg } H_3PO_4$

(B) Calculate the solution's concentration of H₃PO₄ in molarity (M).

Assume 100 g of solution. Convert 0.13 g H_3PO_4 to mols H_3PO_4 and 100 g solution to L. 0.13 g $H_3PO_4 \times \frac{1 \text{ mol } H_3PO_4}{97.994 \text{ g } H_3PO_4} = 0.001\underline{3}2 \text{ mols } H_3PO_4$ 100 g solution $\times \frac{1 \text{ mL soln}}{1.11 \text{ g soln}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 0.090\underline{0} \text{ L solution}$ $\frac{0.00132 \text{ mols}}{0.0900 \text{ L}} = 0.01\underline{4}7 \rightarrow \textbf{0.015 M } \textbf{H}_3\textbf{PO}_4$

(C) Calculate the solution's concentration of H₃PO₄ in molality (m), assuming all the other components in the soda to be the solvent.

Assume 100 g of solution. 100 g solution – 0.13 g $H_3PO_4 = 99.87$ g solvent 99.87 g solvent $\times \frac{1 \text{ kg}}{1000 \text{ g}} = 0.09987 \text{ kg solvent}$ $\frac{0.00132 \text{ mols}}{0.09987 \text{ kg}} = 0.0132 \rightarrow \textbf{1.3} \times \textbf{10}^{-2} \text{ m}$

- 3.) A 113 mL sample of 5.2 M hexane (C_6H_{14}) is mixed with 125 mL of 4.8 M ethanol (C_2H_5OH) at 25°C. The vapor pressures of pure hexane and pure ethanol are 151 torr and 55.1 torr, respectively.
 - (A) Calculate the partial pressure of hexane over the solution, in torr.

Calculate the mole fraction of hexane.

Calculate the mole fraction of nexane.

113 mL hexane
$$\times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{5.2 \text{ mols hexane}}{1 \text{ L}} = 0.5\underline{8}7 \text{ mols hexane}$$

125 mL ethanol $\times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{4.8 \text{ mols ethanol}}{1 \text{ L}} = 0.6\underline{0} \text{ mols ethanol}$

$$X(\text{hexane}) = \frac{0.587 \text{ mols}}{0.60 \text{ mols} + 0.587 \text{ mols}} = 0.4\underline{9}4$$

Use P = X P°

P (hexane) =
$$(0.494)(151 \text{ torr}) = 74.5 \rightarrow 75 \text{ torr}$$

(B) Calculate the partial pressure of the ethanol over the solution, in torr.

Calculate the mole fraction of ethanol.

X (ethanol) =
$$1 - 0.4\underline{9}4 = 0.5\underline{0}6$$

Use P = X P°

P (ethanol) =
$$(0.5\underline{0}6)(55.1 \text{ torr}) = 2\underline{7}.8 \rightarrow 28 \text{ torr}$$

(C) Calculate the total pressure above the solution, in torr.

Use Dalton's Law:
$$P_T = P(hexane) + P(ethanol)$$

$$P_T = 75 \text{ torr} + 28 \text{ torr} = 103 \rightarrow 103 \text{ torr}$$

(D) Calculate the mole fraction of hexane in the **vapor** above the solution.

Use Dalton's Law:
$$P = X P_T \text{ so } X(\text{vapor}) = P/P_T$$

 $X(\text{hexane}) = \frac{75 \text{ torr}}{103 \text{ torr}} = 0.728 \Rightarrow \textbf{0.73}$

(E) Calculate the mole fraction of ethanol in the **vapor** above the solution.

$$1 - 0.73 = 0.27 \rightarrow 0.27$$

4.) Draw the molecular orbital diagram for C_2^+ . What is the expected bond order? Is it stable? Is it paramagnetic or diamagnetic?

Bond Order: $\frac{1}{2}(5-2) = 3/2$, stable (bond order > 0)

Paramagnetic; one unpaired electron

5.) For each of the following molecules, determine the **electronic domain** and the **molecular** geometries around *each* central atom. Also list the **hybridization** expected around *each* central atom and give the total number of σ or π bonds present in the structure.

a.) CO₂

$$\ddot{O} = C = \ddot{O}$$

C is central, 2 bonding groups, 0 nonbonding groups

Electronic: Linear; Molecular: Linear

sp hybridized, 2 σ + 2 π bonds

b.) CIO₃

Cl is central, 3 bonding groups, 1 nonbonding group

Electronic: Tetrahedral; Molecular: Trigonal Pyramidal

sp³ hybridized, 3 σ + 2 π bonds

c.) HONO₂

O is central: 2 bonding groups, 2 nonbonding groups

Electronic: Tetrahedral; Molecular: Bent

sp³ hybridized

N is central: 3 bonding groups, 0 nonbonding groups.

Electronic: Trigonal Planar; Molecular: Trigonal Planar

sp² hybridized

 $4 \sigma + 1 \pi$ bonds