Chem1A, General Chemistry I

1.) Solid magnesium will react with hydrochloric acid to produce hydrogen gas and magnesium chloride. A 0.315 g sample of a mixture containing magnesium and other unreactive materials is dissolved completely in excess hydrochloric acid. The resulting hydrogen gas was collected in a 202 mL container over water at $23^{\circ} \mathrm{C}$. The total pressure inside the container was measured to be 752 torr. At this temperature, the vapor pressure of water is 21.07 mmHg .
a.) Write the balanced chemical equation for this reaction, including phases.

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{MgCl}_{2}(\mathrm{aq})
$$

b.) What element is being reduced? _Hydrogen (+1 $\rightarrow 0$)
c.) What element is being oxidized?

Magnesium ($0 \rightarrow+2$)

d.) Assuming the percent yield of the reaction was 100%, calculate the mass percent of magnesium in the original sample.

Use the Ideal Gas Law to solve for the mols $\mathrm{H}_{2}(\mathrm{~g})$ produced.
$\mathrm{P}=752$ torr -21.07 torr ($1 \mathrm{mmHg}=1$ torr $)=73 \underline{0} .93 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=0.96 \underline{1} \mathrm{~atm}$
$\mathrm{V}=202 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.20 \underline{2} \mathrm{~L} ; \mathrm{n}=$? ; $\mathrm{T}=23+273.15=29 \underline{6} .15 \mathrm{~K}$
$(0.96 \underline{17} \mathrm{~atm})(0.20 \underline{2} \mathrm{~L})=(\mathrm{n})\left(0.08206 \mathrm{~L}^{*} \mathrm{~atm} /\left(\mathrm{mol}{ }^{*} \mathrm{~K}\right)\right)(29 \underline{6} .15 \mathrm{~K})$
$\left(0.1942 \mathrm{~L}^{*} \mathrm{~atm}\right)=(\mathrm{n})\left(24.30 \mathrm{~L}^{*} \mathrm{~atm} / \mathrm{mol}\right)$
$\mathrm{n}=0.0079 \underline{9} 4 \mathrm{mols} \mathrm{H}$
Use stoichiometry to convert to g Mg originally reacted.
$0.0079 \underline{9} 4$ mols $\mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{1 \mathrm{~mol} \mathrm{H}} \times \frac{24.31 \mathrm{~g} \mathrm{Mg}}{1 \mathrm{~mol} \mathrm{Mg}}=0.19 \underline{4} 3 \mathrm{~g} \mathrm{Mg}$
Calculate the mass percent of Mg in the original sample.
$\frac{0.1943 \mathrm{~g} \mathrm{Mg}}{0.315 \mathrm{~g} \text { mixture }} \times 100 \%=61.69 \rightarrow 61.7 \% \mathrm{Mg}$
2.) A tennis ball weighs 56.7 g . Calculate the de Broglie wavelength in m for a ball traveling at 125 mph . ($1 \mathrm{mi} .=1.61 \mathrm{~km}$)

Use the de Broglie equation to solve for waverlength $(\lambda): \lambda=h /(\mathrm{mv})$
$\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$\mathrm{m}=56.7 \mathrm{~g} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=0.056 \underline{7} \mathrm{~kg}$
$\mathrm{v}=125 \mathrm{mi} . / \mathrm{hr} . \times \frac{1.61 \mathrm{~km}}{1 \mathrm{mi} .} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \mathrm{hr} .}{60 \mathrm{~min} .} \times \frac{1 \mathrm{~min} .}{60 \mathrm{sec} .}=55.90 \mathrm{~m} / \mathrm{s}$
$\lambda=\frac{6.626 \times 10^{-34} \mathrm{~J} * \mathrm{~s}}{(0.0567 \mathrm{~kg})\left(55.90 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}=2.0 \underline{9} 0 \times 10^{-34} \rightarrow \mathbf{2 . 0 9} \times 10^{-\mathbf{3 4}} \mathbf{~ m}$
3.) Nicotine is the addictive component of tobacco. An aqueous solution is made by dissolving 1.921 g nicotine into 48.92 g of water, changing the freezing point by $-0.450^{\circ} \mathrm{C} .\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
a.) Calculate the molar mass of nicotine.

Solve for the molality of the solution.
$0.450^{\circ} \mathrm{C}=\left(1.86^{\circ} \mathrm{C} / \mathrm{m}\right)(\mathrm{m})$ so $\mathrm{m}=\frac{0.450^{\circ} \mathrm{C}}{1.86^{\circ} \mathrm{C} / \mathrm{m}}=0.24 \underline{19} \mathrm{~m}$
Solve for the mols of solute from the molality.
$0.24 \underline{1} 9 \mathrm{~m}=\frac{\mathrm{x} \text { mols solute }}{48.92 \mathrm{~g} \text { water } \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}}$ so $\mathrm{x}=(0.24 \underline{1} 9 \mathrm{~m})(0.0489 \underline{2} \mathrm{~kg}$ water $)=0.011 \underline{8} 3 \mathrm{mols}$ solute $\frac{1.921 \mathrm{~g} \text { nicotine }}{0.01183 \text { mols nicotine }}=16 \underline{2} .3 \rightarrow \mathbf{1 6 2} \mathbf{g} / \mathbf{m o l}$
b.) Nicotine contains only carbon, hydrogen, and nitrogen. Elemental analysis revealed a composition of $74.03 \% \mathrm{C}, 8.70 \% \mathrm{H}$, and the rest N by mass. What is the molecular formula of nicotine?

Assume 100 g of sample. Convert each percent to mols, then ratio by the smallest.
$74.03 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=6.16 \underline{0} \mathrm{mols} \mathrm{C} / 1.23 \underline{2} 6 \mathrm{mols} \rightarrow 5.00$ or 5 mols C
$8.70 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=8.630 \mathrm{mols} \mathrm{H} / 1.23 \underline{2} 6 \mathrm{mols} \rightarrow 7.00$ or 7 mols H
$(100-74.03-8.70)=17.2 \underline{7} \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=1.23 \underline{2} 6 \mathrm{mols} \mathrm{N} / 1.23 \underline{2} 6 \mathrm{mols} \rightarrow 1 \mathrm{~mol} \mathrm{~N}$
Calculate the empirical weight. Divide the molecular by the empirical.
$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}:(5)(12.01 \mathrm{~g} / \mathrm{mol})+(7)(1.008 \mathrm{~g} / \mathrm{mol})+(1)(14.01 \mathrm{~g} / \mathrm{mol})=81.116 \mathrm{~g} / \mathrm{mol}$
$\frac{162 \mathrm{~g} / \mathrm{mol}}{81.116 \mathrm{~g} / \mathrm{mol}}=1.99$ or 2 , so $2 \times\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}\right)=\mathrm{C}_{10} \mathrm{H}_{14} \mathbf{N}_{2}$
4.) From a 0.871 M solution of barium nitrate, 267 mL are taken and mixed with 402 mL from a 0.487 M solution of ammonium sulfate. A double displacement reaction is observed.
a.) Write the balanced molecular equation for this reaction.

$$
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})
$$

b.) Write the total/complete ionic equation for this reaction.

$$
\begin{aligned}
& \mathrm{Ba}^{+2}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{-2}(\mathrm{aq}) \rightarrow \\
& \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NH}_{4}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})
\end{aligned}
$$

c.) Write the net ionic equation for this reaction.
$\mathrm{Ba}^{+2}(\mathrm{aq})+\mathrm{SO}_{4}^{-2}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$
d.) Calculate the theoretical yield of solid precipitate, in mols.

Convert each of the volumes to mols BaSO_{4}
$267 \mathrm{~mL} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.871 \mathrm{mols} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}{1 \mathrm{~L} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{1 \mathrm{~mol} \mathrm{BaSO}_{4}}{1 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}=0.232 \underline{5} \rightarrow 0.234 \mathrm{mols} \mathrm{BaSO}_{4}$
$402 \mathrm{~mL}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.487 \mathrm{mols}_{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}^{1 \mathrm{~L}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{BaSO}_{4}}{1 \mathrm{~mol}_{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}}=0.1957 \rightarrow 0.196 \mathrm{mols} \mathrm{BaSO}_{4}}{}$
Theoretical Yield: 0.196 mols BaSO_{4}
5.) Consider the following equation:

$$
3 \mathrm{C}(\text { graphite })+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})
$$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=\text { ? }
$$

Use Hess's Law to determine $\Delta \mathrm{H}_{\mathrm{rxn}}$ from the following data:

$$
\begin{array}{cl}
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) & \Delta \mathrm{H}_{\mathrm{rxn}}=-2219.9 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{C}(\mathrm{graphite})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}_{\mathrm{rxn}}=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}_{\mathrm{rxn}}=-285.8 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Reverse Eqn. 1: $3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})$
Multiply by 3 Eqn. 2: $3 \mathrm{C}($ graphite $)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})$
Multiply by 4 Eqn. 3: $4 \mathrm{H}_{2}(\mathrm{~g})+4 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+3 \mathrm{C}($ graphite $)+3 \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow$

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})+3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

3 C (graphite) $+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$
$\Delta \mathrm{H}_{\mathrm{T}}=(-1)\left(\Delta \mathrm{H}_{1}\right)+(3)\left(\Delta \mathrm{H}_{2}\right)+(4)\left(\Delta \mathrm{H}_{3}\right)=(+2219.9 \mathrm{~kJ} / \mathrm{mol})+(-118 \underline{0} .5 \mathrm{~kJ} / \mathrm{mol})+(-114 \underline{2} \mathrm{~kJ} / \mathrm{mol})$
$\Delta H_{T}=-102.6 \rightarrow-103 \mathrm{~kJ} / \mathrm{mol}$
6.) When potassium iodide ($\mathrm{KI}, 166.00 \mathrm{~g} / \mathrm{mol}$) is added to water, the formation of the solution is an endothermic process with an enthalpy change of $20.3 \mathrm{~kJ} / \mathrm{mol} \mathrm{KI}$ dissolved. At $23.5^{\circ} \mathrm{C}$, enough KI is dissolved in water to make 150.0 mL of a 2.50 M KI solution. Calculate the final temperature of the water, in ${ }^{\circ} \mathrm{C}$, given the heat capacity of liquid water is $4.184 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right)$ and the density of the solution is $1.72 \mathrm{~g} / \mathrm{mL}$.
Solve for the mols and grams of KI present in the solution.
150.0 mL solution $\times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{2.50 \mathrm{mols} \mathrm{KI}}{1 \mathrm{LKI}}=0.37 \underline{5} \mathrm{mols} \mathrm{KI} \times \frac{166.00 \mathrm{~g} \mathrm{KI}}{1 \mathrm{~mol} \mathrm{KI}}=62.25 \mathrm{~g} \mathrm{KI}$

Convert to the J of heat absorbed by the KI dissolving.
0.375 mols KI $\times \frac{20.3 \mathrm{~kJ}}{1 \mathrm{~mol} \mathrm{KI}} \times \frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}=76 \underline{12} \mathrm{~J}$ heat absorbed

Heat absorbed by $\mathrm{KI}(76 \underline{1} 2 \mathrm{~J})=-$ heat lost by solution $(-76 \underline{12 \mathrm{~J}})=\mathrm{m} \mathrm{C}_{\mathrm{s}} \Delta \mathrm{T}$
Find the mass of water via the density of total solution.
150.0 mL solution $\times \frac{1.72 \mathrm{~g} \text { solution }}{1 \mathrm{~mL} \text { solution }}=25 \underline{8} \mathrm{~g}$ solution $-62.25 \mathrm{~g} \mathrm{KI}=195.7 \mathrm{~g}$ water

Solve for T_{f}.
$-76 \underline{12} \mathrm{~J}=(195.7 \mathrm{~g})\left(4.184 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)\right)\left(\mathrm{T}_{\mathrm{f}}-23.5^{\circ} \mathrm{C}\right)$
$-76 \underline{12} \mathrm{~J}=\left(819.0 \mathrm{~J} /{ }^{\circ} \mathrm{C}\right)\left(\mathrm{T}_{\mathrm{f}}-23.5^{\circ} \mathrm{C}\right)$
$-9.294^{\circ} \mathrm{C}=\mathrm{T}_{\mathrm{f}}-23.5^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{f}}=14.20 \rightarrow 14.2^{\circ} \mathrm{C}$
7.) Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ is an aromatic organic hydrocarbon.
a.) Balance the following equation.

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{I})+\ldots 15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots 12 \mathrm{CO}_{2}(\mathrm{~g})+\ldots 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

b.) The enthalpy change associated with the above reaction of 2 mols of $\mathrm{C}_{6} \mathrm{H}_{6}$ is -6535 $\mathrm{kJ} / \mathrm{mol}$. Given the following information, calculate the standard enthalpy of formation for 1 mol of $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{I})$, in $\mathrm{kJ} / \mathrm{mol}$.

Compound	$\mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{kJ} / \mathrm{mol})$	-393.5	-285.8

```
\DeltaH
\DeltaH
-6535 kJ/mol = [(12)(-393.5 kJ/mol) + (6)(-285.8 kJ/mol)] [(2)(x) + (15)(0)]
-6535 kJ/mol = [-472\underline{2}\textrm{kJ}/\textrm{mol}-1714.8 kJ/mol] - [2x]
-98.2 kJ/mol = - 2x
x=4\underline{9.1 kJ/mol }->49\textrm{kJ}/\textrm{mol}
```

8.) Draw the molecular orbital diagram for $\mathrm{N}_{2}{ }^{+2}$, ignoring core electrons. Calculate the bond order and determine whether the molecule is paramagnetic or diamagnetic.

$$
\overline{\overline{\sigma *_{2 p}}} \overline{\pi *_{2 p}}
$$

N

N^{+2}

Bond order: $1 / 2(6-2)=\mathbf{2}$, stable. Diamagnetic
9.) Draw the most plausible Lewis structures for the following molecules, including all resonance structures and formal charges. Indicate the electronic and molecular geometry expected. Determine the polarity of the molecule, give the hybridization around each central atom and determine the number of σ and π bonds in the structure. (8 pts)

Element	\mathbf{N}	\mathbf{S}	\mathbf{F}	\mathbf{I}	$\mathbf{C l}$
$\mathbf{e N}$	3.0	2.5	4.0	2.5	3.0

a.) NSF

18 total -4 used -16 needed $=-2 / 2 \rightarrow 1$ more bond

(expanded octet minimizes formal charges)
EG: Trigonal Planar ; MG: Bent ; polar (N-S (0.5, polar) and S-F (1.5, polar) don't cancel) S: sp ${ }^{2}$ hybridized; 2σ bonds, 2π bonds
b.) $\mathrm{ICl}_{3} \quad 28$ total -6 used -20 needed $=+2 \rightarrow$ expanded octet on iodine

EG: Trigonal Bipyramidal ; MG: T-shaped ; polar (I-Cl (0.5, polar) don't cancel)
I: $s p^{3} d$ hybridized, 3σ bonds
10.) One mole of photons contains 1799 kJ of energy.
a.) Calculate the energy per one photon, in J.

Divide by Avogadro's Number and convert to J.
$\frac{1799 \mathrm{~kJ}}{1 \mathrm{~mol}} \times \frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { photons }} \times \frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}=2.98 \underline{7} 3 \times 10^{-18} \rightarrow \mathbf{2 . 9 8 7} \times \mathbf{1 0}^{-\mathbf{1 8}} \mathrm{J} /$ photon
b.) Calculate the frequency of one photon, in Hz .

Use $\mathrm{E}=\mathrm{h} v$, so $v=\mathrm{E} / \mathrm{h}$

$$
v=\frac{2.987 \times 10^{-18} \mathrm{~J}}{6.626 \times 10^{-34} \mathrm{~J} * \mathrm{~s}}=4.50 \underline{7} 9 \times 10^{15} \rightarrow 4.508 \times 10^{15} \mathrm{~Hz}
$$

c.) Calculate the wavelength of one photon, in nm .

$$
\begin{aligned}
& \text { Use } \mathrm{c}=\lambda * v \text {, so } \lambda=\mathrm{c} / v \\
& \lambda=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{4.508 \times 10^{15} 1 / \mathrm{s}} \times \frac{1 \mathrm{~nm}}{10^{-9} \mathrm{~m}}=66.5 \underline{0} 3 \rightarrow \mathbf{6 6 . 5 0} \mathrm{~nm}
\end{aligned}
$$

11.) A gaseous hydrocarbon weighs 0.231 g and occupies a volume of 102 mL at $23.0^{\circ} \mathrm{C}$ at 749 mmHg . Calculate the molar mass of the unknown, in $\mathrm{g} / \mathrm{mol}$.
Use the Ideal Gas Law to solve for mols of unknown.
$P=749 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=0.98 \underline{5} 5 \mathrm{~atm} ; \mathrm{V}=102 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.10 \underline{2} \mathrm{~L}$
$\mathrm{n}=$? ; $\mathrm{T}=23.0+273.15=296.15 \mathrm{~K}$
$(0.98 \underline{5} 5 \mathrm{~atm})(0.10 \underline{2} \mathrm{~L})=(\mathrm{n})(0.08206 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{K}))(296 . \underline{15} \mathrm{~K})$
$(0.10 \underline{0} 5 \mathrm{~L} \cdot \mathrm{~atm})=(\mathrm{n})(24.30 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol})$
$\mathrm{n}=0.0041 \underline{3} 6 \mathrm{mols}$
Divide grams unknown by mols unknown.
$(0.231 \mathrm{~g}) /(0.004136 \mathrm{mols})=55.84 \rightarrow 55.8 \mathrm{~g} / \mathrm{mol}$
12.) A "coffee-cup" calorimeter contains 100.0 mL of 0.300 M HCl at $20.3^{\circ} \mathrm{C}$. When $1.82 \mathrm{~g} \mathrm{Zn}(\mathrm{s})$ is added, a single displacement reaction is observed and the temperature rises to $30.5^{\circ} \mathrm{C}$. Calculate the heat of reaction per mol Zn , in $\mathrm{kJ} / \mathrm{mol}$, assuming that the specific heat capacity of the solution is $4.184 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right)$, the density of hydrochloric acid is $1.18 \mathrm{~g} / \mathrm{mL}$, and no heat is lost.
Reaction: $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
Determine the limiting reactant.
$100.0 \mathrm{~mL} \mathrm{HCl} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.300 \mathrm{mols} \mathrm{HCl}}{1 \mathrm{LHCl}} \times \frac{1 \mathrm{~mol} \mathrm{ZnCl}}{2 \mathrm{mols} \mathrm{HCl}}=0.015 \underline{0} \mathrm{mols} \mathrm{ZnCl}_{2}$ theoretical yield
$1.82 \mathrm{~g} \mathrm{Zn} \times \frac{1 \mathrm{~mol} \mathrm{Zn}}{65.39 \mathrm{~g} \mathrm{Zn}} \times \frac{1 \mathrm{~mol} \mathrm{ZnCl}}{1 \mathrm{~mol} \mathrm{Zn}}=0.027 \underline{8} 3 \mathrm{mols} \mathrm{ZnCl}{ }_{2}$
Convert the theoretical yield back to mols Zn used.
$0.015 \underline{0}$ mols $\mathrm{ZnCl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Zn}}{1 \mathrm{~mol} \mathrm{ZnCl}_{2}}=0.015 \underline{0} \mathrm{mols} \mathrm{Zn}$ used
Calculate the total mass of the solution.
100.0 mL soln $\times \frac{1.18 \mathrm{~g} \text { soln }}{1 \mathrm{~mL} \text { soln }}=11 \underline{\mathrm{~g} \text { soln }}$

Use $q=m C_{s} \Delta T$ to solve for q.
$\mathrm{q}=(11 \underline{8} \mathrm{~g})\left(4.814 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right)\right)\left(30.5^{\circ} \mathrm{C}-20.3^{\circ} \mathrm{C}\right)=50 \underline{3} 5 \mathrm{~J} \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}=5.0 \underline{3} 5 \mathrm{~kJ}$
Divide $\mathrm{q} / \mathrm{mols} \mathrm{Zn}$ used to find the heat of reaction.
$\Delta \mathrm{H}=\frac{5.035 \mathrm{~kJ}}{0.0150 \mathrm{mols}}=335.7 \rightarrow \mathbf{3 3 6} \mathbf{~ k J} / \mathrm{mol}$

