The Gas Laws
 Chem1A, General Chemistry I

Gases are measured by: pressure (P), volume (V), amount (n), and temperature (T).
Temperature must always be in Kelvin (K) to avoid negative temperatures.

THE SIMPLE GAS LAWS

- Boyle's Law: When n and T are constant, P and V are inversely related.

$$
P \cdot V=\text { constant } \quad O R \quad P_{1} \mathbf{V}_{1}=\mathbf{P}_{2} \mathbf{V}_{\mathbf{2}}
$$

- Charles' Law: When n and P are constant, V and T are directly related.

$$
\frac{V}{T}=\text { constant } \quad O R \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

- Avogadro's Law: When P and T are constant, V and n are directly related.

$$
\frac{v}{n}=\text { constant } \quad O R \quad \frac{v_{1}}{n_{1}}=\frac{v_{2}}{n_{2}}
$$

- Gay-Lussac's Law: When n and V are constant, P and T are directly related.

$$
\frac{P}{T}=\text { constant } \quad O R \quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

THE IDEAL GAS LAW

- $\mathrm{P}=$ atmospheres (atm), $\mathrm{V}=$ Liters (L), $\mathrm{n}=$ moles (mols), $\mathrm{T}=$ Kelvin (K)

$$
\frac{P V}{n T}=R \quad O R \quad P V=n R T
$$

$\mathbf{R}=$ universal gas constant, $0.08206(\mathrm{~L} \cdot \mathrm{~atm}) /(\mathrm{mol} \cdot \mathrm{K})$

- Density: of a gas in g / L

$$
\text { Density }(g / L)=\frac{P \times(\text { molar mass })}{R T}
$$

MIXTURES OF GASES

- Dalton's Law: The total pressure of a mixture of gases is equal to the sum of each of the partial pressures.

$$
\mathbf{P}_{\mathrm{T}}=\mathrm{P}_{1}+\mathrm{P}_{2}+\ldots \mathrm{P}_{\mathrm{n}} \quad \text { OR } \quad \mathbf{P}_{1}=\chi_{1} \mathrm{P}_{\mathrm{T}}
$$

mole fraction $\left(\chi_{1}\right)=$ mols of gas $1 /$ total mols mixture

MOVEMENT OF GASES

- Root Mean Squared Speed: Typically the average speed a particle of gas travels, in m / s.

$$
u_{R M S}=\sqrt{\frac{3 R T}{M}}
$$

$\mathbf{R}=$ universal gas constant, $8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
$\mathrm{T}=$ absolute T , in K
$\mathbf{M}=$ molar mass, in $\mathrm{kg} / \mathrm{mol}$

- Graham's Law: The rate of effusion is inversely proportional to the gas's molar mass.

$$
\sqrt{\frac{M_{2}}{M_{1}}}=\frac{r_{1}}{r_{2}}
$$

rate $=$ inversely proportional to time

REAL GASES

- Van der Waals Equation: At high pressures and low temperatures, gases behave nonideally. Individual particle volume increases V and intermolecular, attractive forces between particles and wall decrease P.

$$
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

$\mathbf{n}=$ amount of particles
a = experimentally derived constant individual to the gas
b = experimentally derived constant individual to the gas

