Acids and Bases

Chem1B, General Chemistry II

RELATIONSHIPS

K_a and K_b of a conjugate pair are inversely related.

pK_a/pK_b and K_a/K_b are inversely related.

 $[H_3O^{\dagger}]/pH$ and $[OH^{-}]/pOH$ of a solution are inversely related.

 K_a/K_b of an acid/base and percent ionization are <u>directly</u> related.

ACIDS:
$$HA(aq) + H_2O(I) \Leftrightarrow H_3O^+(aq) + A^-(aq), K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

Acids donate H^+

The **STRONGER** the acid:

- The larger (less negative exponent) the K_a (strong acids have K_a > 1)
- The smaller the pKa
- The higher the percent ionization (in terms of [H₃O⁺])
- The **higher** the [H₃O⁺] and the **lower** [OH⁻]
- The lower the pH and the higher the pOH
- The **more stable** the conjugate base
- The weaker the conjugate base and the lower (more negative exponent) its K_b

BASES: B(aq) + H₂O(I)
$$\rightleftharpoons$$
 OH⁻(aq) + BH⁺(aq), K_b = $\frac{\left[OH^{-}\right]\left[BH^{+}\right]}{\left[B\right]}$

Bases accept H⁺

The **STRONGER** the base:

- The larger (less negative exponent) the K_b (strong bases have $K_b > 1$)
- The **smaller** the pK_b
- The **higher** the percent ionization (in terms of [OH⁻])
- The **higher** the [OH⁻] and the **lower** the [H₃O⁺]
- The lower the pOH and the higher the pH
- The more stable the conjugate acid
- The weaker the conjugate acid and the lower (more negative exponent) its K_a