Kinetics Chem1B, General Chemistry II

Learning Outcomes: By the end of this chapter you should be able to:

- (1) Predict the effect of physical state, concentration, temperature, a catalyst, molecular orientation, and kinetic energy on the rate of a reaction.
- (2) Use the given rate law for a reaction to solve for any variable in the equation (rate, rate constant, order, or concentration).
- (3) Use the method of initial rates to determine the order (0th, 1st, or 2nd) of reaction for any reactant and determine the value for the rate constant.
- (4) Use graphs of time versus concentration to determine whether a reaction is 0th, 1st, or 2nd order and use their integrated rate laws.
- (5) Calculate the half-life for a 0th, 1st, or 2nd order reaction.
- (6) Use all versions of the Arrhenius Equation to solve for its values.
- (7) Use a complete mechanism to determine the overall rate law for a reaction.
- (8) Label a reaction coordinate diagram for single or multistep reactions.

Equations and Constants

$$\begin{split} & [A]_{t} = -kt + [A]_{0} \\ & \ln[A]_{t} = -kt + \ln[A]_{0} \\ & \frac{1}{[A]_{t}} = kt + \frac{1}{[A]_{0}} \\ & t_{1/2} = \frac{-\ln(0.5)}{k} \approx \frac{0.693}{k} \\ & t_{1/2} = \frac{1}{k[A]_{0}} \\ & k = Ae^{-EA/RT} \text{ or } \ln(k) = -\frac{E_{a}}{RT} + \ln(A) \\ & R = \text{universal gas constant, 8.314 J/mol K or 0.08206 L*atm/mol*K} \\ & \ln\left(\frac{k_{1}}{k_{2}}\right) = \frac{E_{a}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right) \end{split}$$

(1) Introduction to Kinetics

Kinetics studies how fast reactions progress

- How do we define rate?
- What units is rate usually in?

There are **six** main factors that affect (speed up/slow down) the rate of a reaction.

- What are they?
- Briefly describe *how* and *why* each affects reaction rate.

(2) Rate Laws

The **rate** of a reaction can be calculated for any given reactant or product.

- What is the key difference between the rate of reaction for a reactant versus a product?
- In your own words, describe *initial rate, instantaneous rate,* and *average rate*. How are they the same? How are they different?

Stoichiometric coefficients must be included when calculating rate.

• In your own words, describe how to account for stoichiometry in reaction rates.

Ex. 1) The following data was collected from the reaction:

2 Fe³⁺(aq) + Sn²⁺(aq) \rightarrow 2 Fe²⁺(aq) + Sn⁴⁺(aq)

Time (s)	0	30	60
[Fe ³⁺]	0.100	0.050	0.025

a.) Find the average rage for $[Fe^{3+}]$.

b.) Assuming the rate in (a) is constant, calculate $[Fe^{3+}]$ at t = 75 sec.

c.) Find the average rate of $[Fe^{2+}]$.

d.) Find the average rate of [Sn⁴⁺].

Rate laws are equations used to express the speed of a particular reaction.

- Write the generic form of a rate law for a reaction. Define each term.
- What are three orders of reaction we will be discussing?

<u>Ex. 2:</u> For A \rightarrow products, use the following data to answer the questions.

[A]	2.50	0.833
Rate (M/s)	0.625	0.0692
C 11		

a.) Determine the order of the reaction with respect to A.

b.) Find the rate constant, including units.

(3) The Method of Initial Rates

The **method of initial rates** varies the concentration of reactants and measures their initial rates over a series of experiments.

Ex. 3) The following data was collected from the reaction:

 $2 \text{ HgCl}_2 + \text{C}_2\text{O}_4^{2-} \rightarrow 2 \text{ Cl}^- + 2 \text{ CO}_2 + \text{Hg}_2\text{Cl}_2$

Exp.	[HgCl ₂]	[C ₂ O ₄ ²⁻]	Rate
1	0.105	0.15	$1.8 imes 10^{-5}$
2	0.105	0.30	$7.1 imes 10^{-5}$
3	0.052	0.30	$3.5 imes10^{-5}$

a.) Determine the rate law.

b.) Calculate k, including units.

Ex. 4) The following data was collected from the reaction:

 $2 \text{ NO}(g) + Cl_2(g) \rightarrow 2 \text{ NOCl}(g)$

Exp.	[NO]	[Cl ₂]	Rate
1	0.0125	0.0255	$2.27 imes 10^{-5}$
2	0.0125	0.0510	$4.55 imes 10^{-5}$
3	0.0250	0.0255	$9.08\times10^{\text{-5}}$

a.) Determine the rate law.

b.) Find the value of k, including units, from Experiment 2.

c.) Which reaction will progress faster: $2 \text{ HgCl}_2 + C_2O_4^{2-}$ or $2 \text{ NO} + Cl_2$? Explain.

(4) Integrated Rate Laws

Zeroth, first, and second order rate laws can be **integrated** (linearized) to create straight-line graphs.

• Write the integrated rate laws for zeroth, first, and second order reactions. How are they the same? How are they different?

• Describe the graphs for zeroth, first, and second order reactions. What is on the y-axis? The x-axis? What in the integrated rate laws does the slope represent? The y-intercept? Using only graphs, how could you determine the order of the reaction? How could you use this in lab?

Zero Order Reaction			
2 NH ₃ (g) -	> N ₂ (g) +	3 H ₂ (g)	
Time	[NH₃]		
(s)	(M)		
0	1.85		
10	1.65		
25	1.35		
45	0.95		
60	0.65		
90	0.05		

First Order Reaction			
$H_2O_2(aq)> H_2O(I) + 1/2 O_2(g)$			
Time	$[H_2O_2]$	$ln([H_2O_2])$	
(s)	(M)		
0	2.32	0.8415672	
200	2.01	0.6981347	
400	1.72	0.5423243	
600	1.49	0.3987761	
1200	0.98	-0.0202027	
1800	0.62	-0.4780358	
3000	0.25	-1.3862944	

Second Order Reaction		
2 NO ₂ (g)> 2 NO(g) + O ₂ (g)		
Time	[NO ₂]	1/[NO ₂]
(s)	(M)	
0	0.1	10
5	0.017	58.823529
10	0.009	111.11111
15	0.0062	161.29032
20	0.0047	212.76596

<u>Ex. 5</u>) For A \rightarrow products, find [A] at t = 2.50 minutes for a second-order reaction when [A]₀ = 3.50 M and k = 0.0168 M⁻¹ s⁻¹.

(5) Half-Life

The **half-life** is defined as the amount of time required for the initial concentration of reactant to decrease to half its original amount.

• Write the equations for the half-life of zeroth, first, and second order reactions. How are they the same? How are they different?

<u>Ex. 6</u>) The decomposition of H_2O_2 is **first-order**: 2 $H_2O_2(aq) \rightarrow O_2(g) + 2 H_2O(I)$

a.) Calculate [H₂O₂] at t = 132 s if the initial concentration of H₂O₂ was 3.61 M and the rate constant (k) is 7.30×10^{-4} s⁻¹.

b.) Calculate the half-life $(t_{1/2})$ for the decomposition of H_2O_2 , using the above value of k.

Ex. 7) Calculate the half-life of a second order reaction when $[A]_0 = 1.00$ M and k = 0.002 M⁻¹ s⁻¹.

<u>Ex. 8)</u> For a second order reaction at t = 300 seconds, $[A]_t = 0.63$ M and $[A]_0 = 1.00$ M.

a.) Calculate k, including units.

b.) Determine the half-life $(t_{1/2})$ for the above reaction.

(6) The Arrhenius Equation

The **Arrhenius Equation** can be used for any order reaction and includes its dependence on temperature.

• Write all *three* forms of the Arrhenius Equation. Define each term. When would you use which?

<u>Ex. 9</u>) At 298 K, a first order reaction has a rate constant (k) of 3.46×10^{-5} s⁻¹. Calculate T when $t_{1/2} = 2$ hrs. and the activation energy (E_a) is 106 kJ/mol.

(7) Mechanisms

Mechanisms break reactions down into their single steps.

- What is molecularity? When can it be used to determine rate laws?
- <u>Ex. 10</u>) Determine the rate law for: 2 NO + $O_2 \rightarrow 2 NO_2$

$2 \text{ NO} \Rightarrow \text{N}_2\text{O}_2$	fast
$N_2O_2 + O_2 \rightarrow 2 NO_2$	slow

<u>Ex. 11</u>) Determine the raw law for: $NH_4^+ + HNO_2 \rightarrow N_2 + 2 H_2O + H^+$

$HNO_2 + H^+ \rightleftharpoons H_2O + NO^+$	fast
$NH_4^+ \Rightarrow NH_3 + H^+$	fast
$NO^+ + NH_3 \rightarrow NH_3NO^+$	slow
$\rm NH_3NO^+ \rightarrow H_2O + H^+ + N_2$	fast

(8) Reaction Coordinate Diagrams

Reaction Coordinate Diagrams graph the energy of a reaction (y-axis) against the reaction progress (x-axis).

<u>Ex. 12</u>) Draw two reaction coordinate diagrams for an exothermic, single-step reaction (1) with and (2) without a catalyst. Label all important features.

 $\underline{\text{Ex. 13}}$) Draw a reaction coordinate diagram for an endothermic, two-step reaction without a catalyst. Label all important features.