Chem1B, General Chemistry II
1.) Peroxodisulfate $\left(\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right)$ and iodide (I-) react according to the following balanced equation. The data below was collected measuring the rate of the disappearance of $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ at 298 K .

$$
\mathrm{S}_{2} \mathrm{O}_{8}^{2-}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})
$$

Experiment	$\left[\mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{8}}{ }^{\mathbf{2 -}}\right]$, initial	$\left[\mathbf{I}^{-}\right]$, initial	Rate, \mathbf{M} / \mathbf{s}
1	$1.0 \times 10^{-4} \mathrm{M}$	0.010	1.09
2	$2.1 \times 10^{-4} \mathrm{M}$	0.010	2.18
3	$2.1 \times 10^{-4} \mathrm{M}$	0.0049	1.11

a.) Derive the complete rate law for the above reaction.

For $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$, use Exp. 1 and 2:
$\left(\frac{1.0 \times 10^{-4}}{2.1 \times 10^{-4}}\right)^{\mathrm{X}}=\frac{1.09}{2.18}$
$(0.476)^{\mathrm{x}}=0.5 \rightarrow \mathrm{x}=1$, first order in $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$
For I-, use Exp. 2 and 3:
$\left(\frac{0.010}{0.0049}\right)^{x}=\frac{2.18}{1.11}$
$(2.040)^{x}=1.963 \rightarrow x=1$, first order in I^{-}
rate $=\mathrm{k}\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{I}^{-}\right]$
b.) Calculate the average rate constant for all three trials, including units. Express it to three significant figures.

For Exp. 1: $1.09 \mathrm{M} / \mathrm{s}=\mathrm{k}\left(1.0 \times 10^{-4} \mathrm{M}\right)(0.010 \mathrm{M}) \rightarrow \mathrm{k}=1.09 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$
For Exp. 2: $2.18 \mathrm{M} / \mathrm{s}=\mathrm{k}\left(2.1 \times 10^{-4} \mathrm{M}\right)(0.010 \mathrm{M}) \rightarrow k=1.038 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$
For Exp. 3: $1.11 \mathrm{M} / \mathrm{s}=\mathrm{k}\left(2.1 \times 10^{-4} \mathrm{M}\right)(0.0049 \mathrm{M}) \rightarrow \mathrm{k}=1.0 \underline{7} 8 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$
Average: $\left(1.09 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}+1.0 \underline{3} 8 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}+1.0 \underline{7} 8 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right) / 3$
$\mathrm{k}=1.0 \underline{6} 8 \times 10^{6} \rightarrow \mathbf{1 . 0 7} \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$
c.) Calculate the rate constant at 315 K , given that the activation energy for this reaction is $51.8 \mathrm{~kJ} / \mathrm{mol}$.

Use Arrhenius's Equation (ratio).
$\ln \left(\mathrm{k}_{1} / 1.07 \times 10^{6}\right)=-\left(51.8 \times 10^{3} \mathrm{~J} / \mathrm{mol}\right) /(8.314 \mathrm{~J} / \mathrm{mol} * \mathrm{~K})[(1 / 315 \mathrm{~K})-(1 / 298 \mathrm{~K})]$
$\ln \left(\mathrm{k}_{1} / 1.07 \times 10^{6}\right)=(-62 \underline{3} 0 \mathrm{~K})\left(-0.0001811 \mathrm{~K}^{-1}\right)$
$\ln \left(\mathrm{k}_{1} / 1.07 \times 10^{6}\right)=1.128$
$\left(k_{1} / 1.07 \times 10^{6}\right)=e^{1.128}=3.090$
$\mathrm{k}_{1}=(3.090)\left(1.07 \times 10^{6}\right)=33 \underline{0} 6874 \rightarrow 3.31 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$
2.) Calculate the half life $\left(t_{1 / 2}\right)$ for a second-order reaction that has a rate constant of 3.18×10^{-4} $\mathrm{M}^{-2} \mathrm{~s}^{-1}$ and an initial concentration of 0.0561 M .

Use the half-life equation for the second order reaction.
$\mathrm{t}_{1 / 2}=1 /\left(\mathrm{k} \cdot[\mathrm{A}]_{0}\right)=1 /\left(3.18 \times 10^{-4} \mathrm{M}^{-2} \mathrm{~s}^{-1} \cdot 0.0561 \mathrm{M}\right)=1 /\left(1.7 \underline{8} 4 \times 10^{-5}\right)=56 \underline{0} 4 \rightarrow \mathbf{5 . 6 1} \times 10^{4} \mathrm{~s}$

Chem1B, General Chemistry II
3.) Consider the following equilibrium.

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}=-230 \mathrm{~kJ} / \mathrm{mol}, \mathrm{~K}_{\mathrm{c}}=190 \text { at } 1000 \mathrm{~K}
$$

a.) At 1000 K , does the reaction favor reactants or products? Explain.

Products. K_{c} is larger than one $(190>1)$, so the numerator ([products]) is larger.
b.) In which direction will this reaction shift (to reactants or to products) at 200 K ? Explain.

Products. The negative enthalpy indicates that the reaction is exothermic; therefore, heat is a product. Lowering the temperature will lower the heat, thus forcing the equilibrium to favor the forward reaction to produce more.
c.) In which direction will this reaction shift (to reactants or products) if the volume of the container is lowered? Explain.

Products. Lowering the volume will increase the pressure. There are four moles of gas total on the reactants side and two on the products, the equilibrium will favor the forward reaction to reduce the pressure.
d.) Calculate K_{p} for the above equilibrium.

$$
\begin{aligned}
& \text { Use } K_{p}=K_{c}(R T)^{\Delta n} \\
& K_{p}=(190)\left[\left(0.0821 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(1000 \mathrm{~K})\right]^{-2} \\
& \mathrm{~K}_{\mathrm{p}}=(190)(0.000 \underline{1} 48)=0.0 \underline{2} 8 \rightarrow 0.03
\end{aligned}
$$

4.) A 1.00 mole sample of $\mathrm{NaHCO}_{3}(\mathrm{~s})$ is put in an evacuated (empty) 2.50 L flask at 373.15 K . Calculate the partial pressures of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, in atm.

$$
2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \leftrightharpoons \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=0.23
$$

$K_{p}=\left(\mathrm{P}_{\mathrm{CO}}\right)\left(\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right)$, pure solids do NOT appear in the equilibrium constant expression.

	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$
Initial	0	0
Change	+x	+x
Equilibrium	x	x

$0.23=(\mathrm{x})(\mathrm{x}) \rightarrow \mathrm{x}=\mathrm{v} 0.23=0.4 \underline{7} 9 \rightarrow 0.48 \mathrm{~atm}$
For $\mathrm{CO}_{2}(\mathrm{~g}): 0.48$ atm
For $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}): \mathbf{0 . 4 8}$ atm
Total pressure: $0.48 \mathrm{~atm}+0.48 \mathrm{~atm}=0.96 \mathrm{~atm}$

Chem1B, General Chemistry II
5.) Consider the following equilibrium.

$$
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Fe}^{2+}(\mathrm{aq}) \leftrightharpoons \mathrm{Ag}(\mathrm{~s})+\mathrm{Fe}^{3+}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{c}}=2.98
$$

Initially, the solutions are prepared with excess $\mathrm{Ag}(\mathrm{s}),\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{Fe}^{2+}\right]=0.200 \mathrm{M}$, and $\left[\mathrm{Fe}^{3+}\right]=$ 0.350 M . Calculate the concentrations of each ion at equilibrium.

Calculate Q to compare to K_{c}.
$\mathrm{Q}=\frac{(0.350 \mathrm{M})}{(0.200 \mathrm{M})(0.200 \mathrm{M})}=8.75>\mathrm{K}_{\mathrm{c}}$, therefore $\underline{\text { backwards }}$ reaction will occur.

	Ag^{+}	Fe^{2+}	Fe^{3+}
Initial	0.200	0.200	0.350
Change	+x	+x	-x
Equilibrium	$0.200+\mathrm{x}$	$0.200+\mathrm{x}$	$0.350-\mathrm{x}$

$2.98=\frac{(0.350-x)}{(0.200+x)(0.200+x)}=\frac{0.350-x}{0.04+0.400 x+x^{2}}$
$(2.98)\left(0.04+0.400 x+x^{2}\right)=0.350-x$
$2.98 x^{2}+1.192 x+0.1192=0.350-x$
$2.98 x^{2}+2.192 x-0.2308=0$
$x=\frac{-2.192 \pm \sqrt{2.192^{2}-(4)(2.98)(-0.2308)}}{(2)(2.98)}$
$x=(-2.192 \pm 2.7488) / 5.96$, must be + to avoid negative concentration
$x=(-2.192+2.7488) / 5.96=(0.5568) / 6.06=0.09342$
$\left[\mathrm{Ag}^{+}\right]=0.200 \mathrm{M}+0.09342 \mathrm{M}=0.293 \mathrm{M}$
$\left[\mathrm{Fe}^{2+}\right]=0.200 \mathrm{M}+0.09342 \mathrm{M}=\mathbf{0 . 2 9 3} \mathrm{M}$
$\left[\mathrm{Fe}^{3+}\right]=0.350 \mathrm{M}-0.09342 \mathrm{M}=\mathbf{0 . 2 5 7} \mathrm{M}$
6.) The following reaction has an experimentally-derived rate law as given.

$$
2 \mathrm{NO}+2 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \text { rate }=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]
$$

Show that this is consistent with the following three-step mechanism.
(1) $2 \mathrm{NO} \leftrightharpoons \mathrm{N}_{2} \mathrm{O}_{2}$ (forward k_{1}; backward k_{2}), fast
(2) $\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}\left(k_{3}\right)$, slow
(3) $\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}\left(\mathrm{k}_{4}\right)$, fast

Rate-determining step: $\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$, rate $=\mathrm{k}_{3}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{H}_{2}\right]$
From (1): $\mathrm{k}_{1}[\mathrm{NO}]^{2}=\mathrm{k}_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]$, so $\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=\left(\mathrm{k}_{1}[\mathrm{NO}]^{2}\right) / \mathrm{k}_{2}$
Therefore,
rate $=k_{3}\left(k_{1}[N O]^{2} / k_{2}\right)\left[\mathrm{H}_{2}\right]=\left(k_{3} k_{1} / k_{2}\right)[N O]^{2}\left[\mathrm{H}_{2}\right]$

