Chem1B, General Chemistry II
1.) Both $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\left(\mathrm{K}_{\mathrm{a}}=4.2 \times 10^{-13}\right)$ and $\mathrm{HSO}_{3}^{-}\left(\mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-8}\right)$ are amphiprotic (amphoteric). Write out the expected equilibrium formed between these compounds, clearly indicating which will behave as the acid and which as the base.
Since HSO_{3}^{-}has a higher Ka , it is the stronger acid and will donate the proton to $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
$\mathrm{HSO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$
2.) Consider a buffer solution created by mixing formic acid with formate by the following equilibrium.

$$
\mathrm{HCHO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightharpoons \mathrm{CHO}^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}
$$

a.) Calculate the grams of magnesium formate $\left(\mathrm{Mg}\left(\mathrm{CHO}_{2}\right)_{2}, 114.35 \mathrm{~g} / \mathrm{mol}\right)$ needed to be dissolved in 1.50 L of 0.25 M formic acid to obtain a pH of 4.23 .
$4.23=-\log \left(1.8 \times 10^{-4}\right)+\log ([$ base $] / 0.25 \mathrm{M})$
$0.4852=\log ([$ base $] / 0.25)$
[base] $=0.7642 \mathrm{M}$
$0.7642 \mathrm{mols} / \mathrm{L} \times(1.50 \mathrm{~L})=1.146$ moles formate
1.146 mols formate $\times \frac{1 \text { mole }{\mathrm{Mg}\left(\mathrm{CHO}_{2}\right)_{2}}_{2 \text { moles } \mathrm{CHO}}^{2}}{2} \times \frac{114.35 \mathrm{~g} \mathrm{Mg}\left(\mathrm{CHO}_{2}\right)_{2}}{1 \mathrm{~mole} \mathrm{Mg}_{\left(\mathrm{CHO}_{2}\right)_{2}}}=65.54 \rightarrow 65.5 \mathrm{~g} \mathrm{Mg}\left(\mathrm{CHO}_{2}\right)_{2}$
b.) To the buffer solution in (a), 0.125 moles of sodium hydroxide (NaOH) are added without changing the volume of the solution. Calculate the new pH of the buffer.
NaOH is a strong base and will reduce the acid and add to the conjugate base.
$\frac{0.25 \text { moles acid }}{1 \text { Lsolution }} \times 1.50$ L solution $=0.375$ moles HCHO_{2} initially
0.375 moles HCHO_{2} initially -0.125 mols $\mathrm{NaOH}=0.250$ moles HCHO_{2} in excess
0.125 moles $\mathrm{NaOH} \times \frac{1 \text { mole formate }}{1 \text { mole } \mathrm{NaOH}}=0.125$ moles formate produced
1.146 moles $\mathrm{CHO}_{2}{ }^{-}$initially +0.125 moles $\mathrm{CHO}_{2}{ }^{-}$produced $=1.2 \underline{1} 1$ moles $\mathrm{CHO}_{2}{ }^{-}$

$$
\begin{aligned}
& \mathrm{pH}=-\log \left(1.8 \times 10^{-4}\right)+\log \left(\frac{1.271 \text { moles formate }}{1.50 \text { Lsolution }} \frac{\frac{0.50 \text { moles caid }}{1.50 \text { Lsolution }}}{\mathrm{pH}}=-\log \left(1.8 \times 10^{-4}\right)+0.70 \underline{62}=4.45 \underline{0} 9 \rightarrow 4.451 \text { (should be higher than }(\mathrm{a})\right)
\end{aligned}
$$

c.) To the buffer solution in (a), 0.135 moles of hydrobromic acid (HBr) are added without changing the volume of the solution. Calculate the new pH of the buffer. HBr is a strong acid and will reduce the amount of conjugate base and add to the acid. 1.146 moles CHO_{2}^{-}initially -0.135 moles $\mathrm{HBr}=1.011$ moles $\mathrm{CHO}_{2}{ }^{-}$excess 0.135 moles $\mathrm{HBr} \times \frac{1 \text { mole acid produced }}{1 \text { mole } \mathrm{HBr}}=0.135$ moles acid produced 0.375 moles HCHO_{2} initially +0.135 moles $\mathrm{HBr}=0.5 \underline{1}$ moles HCHO_{2}

$$
\begin{aligned}
& \mathrm{pH}=-\log \left(1.8 \times 10^{-4}\right)+\log \left(\frac{\frac{1.011 \text { moles formate }}{1.50 \text { solution }}}{\frac{0.5 \text { moles acid }}{1.50 \text { L solution }}}\right) \\
& \mathrm{pH}=-\log \left(1.8 \times 10^{-4}\right)+0.29 \underline{11} 1=4.04 \underline{1} 9 \rightarrow \mathbf{4 . 0 4 2} \text { (should be lower than (a)) }
\end{aligned}
$$

3.) Consider the following compounds all at $0.100 \mathrm{M}: \mathrm{HNO}_{3}, \mathrm{NaOH}, \mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}\right), \mathrm{HClO}_{2}$ $\left(K_{a}=1.1 \times 10^{-2}\right)$.
a.) Arrange the above in order of increasing $\mathbf{p H}$, from lowest to highest.
$\mathrm{HNO}_{3}, \mathrm{HClO}_{2}, \mathrm{NH}_{3}, \mathrm{NaOH}$
b.) Arrange the above in order of increasing \% ionization, from lowest to highest.
$\mathrm{NH}_{3}, \mathrm{HClO}_{2}, \mathrm{HNO}_{3}=\mathrm{NaOH}$

Chem1B, General Chemistry II
4.) Should a precipitate of $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$ form in a solution made from $0.010 \mathrm{M} \mathrm{MgCl}_{2}$ and 0.10 M NH_{3} ? The K_{b} for NH_{3} is 1.8×10^{-5}, and the $\mathrm{K}_{\text {sp }}$ for $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1.8×10^{-11}.
$\left[\mathrm{Mg}^{2+}\right]=0.010 \mathrm{M} \mathrm{MgCl}_{2} \times \frac{1 \text { mole } \mathrm{Mg}^{2+}}{1 \text { mole } \mathrm{MgCl}_{2}}=0.010 \mathrm{M} \mathrm{Mg}^{2+}$

	$\mathrm{NH}_{3}(\mathrm{aq})+$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \leftrightarrow$	$\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+$	$\mathrm{OH}^{-}(\mathrm{aq})$
I	0.10 M		0	0
C	-x		+x	+x
E	$0.10-\mathrm{x}$		x	x

$\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{x^{2}}{0.10}$ (ignoring $-x$ due to low \% ionization)
$x^{2}=1.8 \times 10^{-6} \rightarrow x=1.34 \times 10^{-3} \mathrm{M}=\left[\mathrm{OH}^{-}\right]$
$Q=(0.010 \mathrm{M})\left(1.34 \times 10^{-3}\right)^{2}=1.8 \times 10^{-8}, Q>K_{\text {sp }}$ so yes, the salt will precipitate.
5.) Consider the titration of a 30.0 mL portion of $0.20 \mathrm{M} \mathrm{HF}\left(\mathrm{K}_{\mathrm{a}}=6.6 \times 10^{-4}\right)$ with 0.10 M NaOH .
a.) Calculate the initial pH of the solution when 0 mL of NaOH has been added.
$\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\quad \mathrm{F}^{-}(\mathrm{aq})$
I
0.2000
C $-x+x+x$

E $0.20-x \quad x \quad x$
$6.6 \times 10^{-4}=\frac{x^{2}}{0.20}$ (ignoring $-x$ due to low \% ionization)
$x^{2}=1.32 \times 10^{-4} \rightarrow x=0.01 \underline{1} 4=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pH}=-\log (0.0114)=1.939 \rightarrow 1.94$
b.) Calculate the pH of the solution after 10.0 mL of NaOH have been added.
$10.0 \mathrm{~mL} \mathrm{NaOH} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.10 \mathrm{mols} \mathrm{NaOH}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{HF}}{1 \mathrm{~mol} \mathrm{NaOH}}=1.0 \times 10^{-3} \mathrm{moles} \mathrm{HF}$ used
30.0 mL HF initial $\times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.20 \text { moles } \mathrm{HF}}{1 \mathrm{~L}}=6.0 \times 10^{-3}$ moles HF initial
6.0×10^{-3} initial -1.0×10^{-3} used $=5.0 \times 10^{-3} \mathrm{mols} \mathrm{HF}$ in excess
moles NaOH added $=$ moles F^{-}produced, so moles $\mathrm{F}^{-}=1.0 \times 10^{-3}$ moles
$[\mathrm{HF}]=\left(5.0 \times 10^{-3} \mathrm{moles}\right) /(0.030 \mathrm{~L}+0.010 \mathrm{~L})=0.125 \mathrm{M}$
$\left[\mathrm{F}^{-}\right]=1.0 \times 10^{-3} \mathrm{moles} /(0.030 \mathrm{~L}+0.010 \mathrm{~L})=0.025 \mathrm{M}$
$\mathrm{pH}=-\log \left(6.6 \times 10^{-4}\right)+\log (0.025 / 0.125)=2.481 \rightarrow 2.48$
c.) Calculate the pH of the solution at equivalence point.
6.0×10^{-3} moles HF initial $=6.0 \times 10^{-3}$ moles NaOH added $=6.0 \times 10^{-3}$ moles F^{-}present
6.0×10^{-3} moles $\mathrm{NaOH} \times(1 \mathrm{~L} / 0.10$ moles NaOH$)=0.06 \mathrm{~L}$ added to reach equiv.
$\left[\mathrm{F}^{-}\right]=6.0 \times 10^{-3} \mathrm{moles} /(0.06 \mathrm{~L}+0.030 \mathrm{~L})=0.0666 \mathrm{M}$

	$\mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	$\leftarrow \mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$	
I	0.066	0	0
C	-x	+x	+x
E	$0.066-\mathrm{x}$	x	x

$K_{b}=\left(1.0 \times 10^{-14}\right) /\left(6.6 \times 10^{-4}\right)=1.51 \times 10^{-11}=\frac{x^{2}}{0.066}$ (ignoring $-x$ term due to low \% ion)
$x^{2}=1.0 \times 10^{-12} \rightarrow x=1.0 \times 10^{-6}=[\mathrm{OH}-]$ so $\mathrm{pOH}=-\log \left(1.0 \times 10^{-6}\right)=6.00$
$\mathrm{pH}=14-6.00=8.00$

Chem1B, General Chemistry II

6.) Calculate the total change in entropy ($\Delta \mathrm{S}_{\text {total }}$) for 18.3 g of $\mathrm{H}_{2} \mathrm{O}(\mathrm{s})(18.016 \mathrm{~g} / \mathrm{mol})$ at 273 K to melt in a container held at 315 K , given that the heat of fusion $\left(\Delta \mathrm{H}_{\text {fus }}\right)$ for water is $6.02 \mathrm{~kJ} / \mathrm{mol}$ at 0 K . Assume complete heat transfer from the ice to the surrounding air.

$\Delta \mathrm{S}_{\text {sys }}=(6.1 \underline{14 \mathrm{~kJ}}) / 273 \mathrm{~K}=0.022 \underline{3} 9 \mathrm{~kJ} / \mathrm{K}$
$\Delta \mathrm{S}_{\text {surr }}=(-6.1 \underline{1} 4 \mathrm{~kJ}) / 315 \mathrm{~K}=-0.019 \underline{1} \mathrm{~kJ} / \mathrm{K}$
$\Delta \mathrm{S}_{\text {total }}=0.022 \underline{3} 9 \mathrm{~kJ} / \mathrm{K}-0.019 \underline{4} 1 \mathrm{~kJ} / \mathrm{K}=2.9 \underline{7} \times 10^{-3} \mathrm{~kJ} / \mathrm{K} \times 1000 \mathrm{~J} / \mathrm{kJ} \rightarrow 2.98 \mathrm{~J} / \mathrm{K}$
7.) Consider the following equilibrium:

$$
\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s}) \leftrightharpoons \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{sp}}=1.3 \times 10^{-33}
$$

A solution has $\left[\mathrm{Al}^{3+}\right]=0.075 \mathrm{M}$ and $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=1.00 \mathrm{M}$. What is the maximum quantity, in g, of $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(82.03 \mathrm{~g} / \mathrm{mol})$ that can be added to 250.0 mL of this solution before precipitation of $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$ begins? K_{a} for acetic acid is 1.8×10^{-5}.
$\mathrm{K}_{\text {sp }}=1.3 \times 10^{-33}=\left[\mathrm{Al}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}=(0.075 \mathrm{M})(x)^{3} \rightarrow x=2.58 \times 10^{-11}=\left[\mathrm{OH}^{-}\right]$
$\mathrm{pOH}=-\log \left(2.58 \times 10^{-11}\right)=10.5 \underline{8} 7$, so $\mathrm{pH}=14-10.5 \underline{8} 7=3.4 \underline{1} 2$ at saturation
$3.4 \underline{12}=-\log \left(1.8 \times 10^{-5}\right)+\log (x / 1.00)$
$-1.331=\log (x / 1.00)$
$10^{-1.331}=0.04 \underline{6} 5=x / 1.00 \rightarrow x=0.04 \underline{6} 5=\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]$
$0.04 \underline{6} 5$ moles $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} / 1 \mathrm{~L} \times 0.2500$ L solution $=0.0116$ moles $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
$0.01 \underline{16}$ moles $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{2-} \times \frac{1 \text { mole sodium acetate }}{1 \text { mole acetate }} \times \frac{82.03 \mathrm{~g}}{1 \text { mole sodium acetate }}=0.9 \underline{5}$
$\rightarrow 0.96 \mathrm{~g} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

