Chem1B, General Chemistry II
1.) Radium- 226 undergoes radioactive α-decay.
a.) Write the balanced nuclear reaction.
b.) If the half-life of radium- 226 is 1.25×10^{9} years, calculate the amount of radium- 226 remaining in a rock that is 1.5×10^{9} years old and originally 15 kg .
c.) Based on your answer from (b), how many kg of the produced element in (a) by decay are present after 1.5×10^{9} years?
2.) A solution of $0.10 \mathrm{M} \mathrm{CuSO}_{4}(\mathrm{aq})$ is electrolyzed for 1.00 hours by a current of 1.62 A . Calculate the amount of $\mathrm{Cu}(\mathrm{s})$, in g , deposited at the cathode.
3.) Consider the following equilibrium at 298 K :

$$
\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{~s})
$$

Calculate the reduction potential (E° red $)$ for $\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq})$, given that $\mathrm{Ag}^{+}+1 \mathrm{e}^{-} \rightarrow$ $\mathrm{Ag}(\mathrm{s})$ has a reduction potential of +1.98 V and the equilibrium constant $\left(\mathrm{K}_{\text {eq }}\right)$ is 6.29×10^{30}.

Chem1B, General Chemistry II
4.) Consider the following equilibrium:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(\mathrm{~g}) \quad \text { At } 533 \mathrm{~K}, \mathrm{~K}_{\mathrm{p}}=4.56 \times 10^{8}
$$

a.) Calculate $\Delta \mathrm{G}^{\circ}$ at 533 K , in $\mathrm{kJ} / \mathrm{mol}$, at equilibrium.
b.) Calculate $\Delta \mathrm{S}_{\mathrm{rxn}}$, given that $\Delta \mathrm{S}^{\circ} \mathrm{CO}=197.7 \mathrm{~J} / \mathrm{K}, \Delta \mathrm{S}^{\circ} \mathrm{O}_{2}=205.1 \mathrm{~J} / \mathrm{K}$, and $\Delta \mathrm{S}^{\circ} \mathrm{CO}_{2}=213.7$ J / K.
c.) Calculate the heat of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ in $\mathrm{kJ} / \mathrm{mol}$, given that for $\mathrm{CO}, \Delta \mathrm{H}_{\mathrm{f}}=-110.5$ $\mathrm{kJ} / \mathrm{mol}$.
5.) Given the following:

$$
\begin{array}{ll}
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}-\mathrm{Cd}(\mathrm{~s}) & \mathrm{E}^{\circ}{ }_{\text {red }}=-0.403 \mathrm{~V} \\
\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{~s}) & \mathrm{E}^{\circ}{ }_{\text {red }}=+1.52 \mathrm{~V}
\end{array}
$$

a.) Identify the anode.
b.) Identify the cathode.
c.) Write the balanced overall redox reaction between Cd and Au.
d.) Calculate $\mathrm{E}^{\circ}{ }_{\text {cell, }}$ in V .
e.) Calculate $\Delta \mathrm{G}^{\circ}$ in $\mathrm{kJ} / \mathrm{mol}$ for the above reaction.

Chem1B, General Chemistry II
6.) Consider a radioactive atom of uranium-238 (mass: 238.0289 amu).
a.) Write the balanced nuclear equation for the α-decay of uranium- 238 .
b.) Calculate the energy change, in J, associated with this nuclear reaction (the elemental product weighs 232.0381 amu and the decayed particle weighs $4.00150 \mathrm{amu}, \mathrm{m}_{\mathrm{e}}=$ $5.48580 \times 10^{-4} \mathrm{amu}, \mathrm{m}_{\mathrm{n}}=1.00866 \mathrm{amu}, \mathrm{m}_{\mathrm{p}}=1.00728 \mathrm{amu}$).
c.) Uranium- 238 can undergo sequential radioactive decay. Using your answer from (1), determine the final product when the product of (1) undergoes a further two β-decay reactions.
7.) Consider the following equilibrium:

$$
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{G}^{\circ}=+102.6 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}^{\circ}=-67.68 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{~S}^{\circ}=-120.6 \mathrm{~J} / \mathrm{K}
$$

a.) Calculate the equilibrium constant (K_{p}) for this reaction.
b.) Calculate the temperature, in K, at which this equilibrium will begin to be spontaneous.
c.) Using your answer from (b), find the partial pressure of $\mathrm{NO}_{2}(\mathrm{~g})$ when the system is at equilibrium at that temperature if all the partial pressures are equal.

