PRACTICE EXAM #3 (Ch. 19-21)

Chem1B, General Chemistry II

- 1.) Radium-226 undergoes radioactive α -decay.
 - a.) Write the **balanced** nuclear reaction.
 - b.) If the half-life of radium-226 is 1.25×10^9 years, calculate the amount of radium-226 remaining in a rock that is 1.5×10^9 years old and originally 15 kg.
 - c.) Based on your answer from (b), how many kg of the produced element in (a) by decay are present after 1.5 \times 10 9 years?

2.) A solution of 0.10 M CuSO₄(aq) is electrolyzed for 1.00 hours by a current of 1.62 A. Calculate the amount of Cu(s), in g, deposited at the cathode.

3.) Consider the following equilibrium at 298K:

 $Cu^{+}(aq) + Ag^{+}(aq) \Rightarrow Cu^{2+}(aq) + Ag(s)$

Calculate the reduction potential (E°_{red}) for $Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq)$, given that $Ag^{+} + 1 e^{-} \rightarrow Ag(s)$ has a reduction potential of +1.98 V and the equilibrium constant (K_{eq}) is 6.29×10^{30} .

PRACTICE EXAM #3 (Ch. 19-21)

Chem1B, General Chemistry II

4.) Consider the following equilibrium:

$$2 \text{ CO(g)} + \text{O}_2(\text{g}) \Rightarrow 2 \text{ CO}_2(\text{g})$$
 At 533 K, K_p = 4.56×10^8

- a.) Calculate ΔG° at 533 K, in kJ/mol, at equilibrium.
- b.) Calculate ΔS_{rxn} , given that ΔS° CO = 197.7 J/K, ΔS° O₂ = 205.1 J/K, and ΔS° CO₂ = 213.7 J/K.
- c.) Calculate the heat of formation of $CO_2(g)$ in kJ/mol, given that for CO, ΔH_f = -110.5 kJ/mol.

5.) Given the following:

$$Cd^{2+}(aq) + 2 e^{-} \rightarrow Cd(s)$$

Au³⁺(aq) + 3 e⁻ → Au(s)
E[°]_{red} = - 0.403 V
E[°]_{red} = + 1.52 V

- a.) Identify the **anode**.
- b.) Identify the cathode.
- c.) Write the **balanced** overall redox reaction between Cd and Au.
- d.) Calculate E[°]_{cell}, in V.
- e.) Calculate ΔG° in kJ/mol for the above reaction.

PRACTICE EXAM #2 (Ch. 16-19)

Chem1B, General Chemistry II

6.) Consider a radioactive atom of uranium-238 (mass: 238.0289 amu).

- a.) Write the **balanced** nuclear equation for the α -decay of uranium-238.
- b.) Calculate the energy change, in J, associated with this nuclear reaction (the elemental product weighs 232.0381 amu and the decayed particle weighs 4.00150 amu, $m_e = 5.48580 \times 10^{-4}$ amu, $m_n = 1.00866$ amu, $m_p = 1.00728$ amu).

c.) Uranium-238 can undergo sequential radioactive decay. Using your answer from (1), determine the final product when the product of (1) undergoes a further **two** β -decay reactions.

7.) Consider the following equilibrium:

 $N_2(g) + 2 O_2(g) \Rightarrow 2 NO_2(g)$ $\Delta G^{\circ} = +102.6 \text{ kJ/mol}, \Delta H^{\circ} = -67.68 \text{ kJ/mol}, \Delta S^{\circ} = -120.6 \text{ J/K}$

a.) Calculate the equilibrium constant (K_p) for this reaction.

- b.) Calculate the temperature, in K, at which this equilibrium will begin to be spontaneous.
- c.) Using your answer from (b), find the partial pressure of $NO_2(g)$ when the system is at equilibrium at that temperature if all the partial pressures are equal.