PRACTICE EXAM #3 (Ch. 19-21)

Chem1B, General Chemistry II

- 1.) Radium-226 undergoes radioactive $\alpha\text{-decay}.$
 - a.) Write the balanced nuclear reaction. Loses two neutrons and two protons (He)
 ²²⁶₈₈Ra→ ²²²₈₆Rn+ ⁴₂He
 - b.) If the half-life of radium-226 is 1.25×10^9 years, calculate the amount of radium-226 remaining in a rock that is 1.5×10^9 years old and originally 15 kg. Determine the rate constant for the first order reaction. $t_{1/2} = (0.693)/k$, so $k = (0.693)/(1.25 \times 10^9 \text{ years}) = 5.544 \times 10^{-10} \text{ yr}^{-1}$ For a first order reaction: $ln(N_t/N_0) = -(5.544 \times 10^{-10} \text{ yr}^{-1})(1.5 \times 10^9 \text{ yr}) = -0.8316$ $N_t/N_0 = e^{-0.8316} = 0.435$ $N_t = (2.296)(N_0) = (0.435)(15 \text{ kg}) = 6.53 \rightarrow 6.5 \text{ kg of radium-226}$
 - c.) Based on your answer from (b), how many kg of the produced element in (a) after decay are present after 1.5 × 10⁹ years?
 Determine how many kg of radon-226 were lost.
 15 kg initial 6.5 kg remaining = 8.5 kg lost
 Use mass numbers as mass ratio.
 8.5 kg = (226/222)(kg Rn) → 8.3 → 8 kg radon-222 formed

2.) A solution of 0.10 M CuSO₄(aq) is electrolyzed for 1.00 hours by a current of 1.62 A. Calculate the amount of Cu(s), in g, deposited at the cathode.

Calculate the total coulombs put into the system. (1.00 hours) x (60 min./1 hr.) x (60 sec./1 min.) = 3600 sec 1.62 A = 1.62 C/sec x (3600 sec) = 5832 C Convert to moles e⁻ 5832 C x (1 mole e⁻ / 96485 C) = 0.06044 moles e⁻ Convert to g Cu (recall: Cu²⁺(aq) + 2 e⁻ \rightarrow Cu(s)) 0.06044 moles e⁻ × $\frac{1 \text{ mole Cu}}{2 \text{ moles e}^-}$ × $\frac{63.546 \text{ g Cu}}{1 \text{ mole Cu}}$ = $1.920 \rightarrow$ **1.92 g Cu** 3.) Consider the following equilibrium at 298K:

 $Cu^{+}(aq) + Ag^{+}(aq) \Rightarrow Cu^{2+}(aq) + Ag(s)$

Calculate the reduction potential (E°_{red}) for $Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq)$, given that $Ag^{+} + 1 e^{-} \rightarrow Ag(s)$ has a reduction potential of +1.98 V and the equilibrium constant (K_{eq}) is 6.29×10^{30} . Find ΔG° $\Delta G^{\circ} = - RT ln(K) = -(8.314 J/(mol \cdot K))(298 K)(ln (6.29 \times 10^{30})) = -1.757 \times 10^{5} J$ Solve for E°_{cell} $\Delta G^{\circ} = - nF E^{\circ}_{cell}$ $-1.757 \times 10^{5} J = -(1 e^{-})(96485 C/mol e^{-})(E^{\circ}_{cell}) \rightarrow E^{\circ}_{cell} = 1.821 V$ Solve for E°_{red} of Cu, behaving as **anode** (oxidized).

 $1.8\underline{2}1 \text{ V} = 1.98 \text{ V} - \text{E}^{\circ}_{\text{red, Cu}} \rightarrow \text{E}^{\circ}_{\text{red, Cu}} = 1.98 \text{ V} - 1.8\underline{2}1 \text{ V} = 0.1\underline{5}8 \rightarrow 0.16 \text{ V}$

PRACTICE EXAM #3 (Ch. 19-21)

Chem1B, General Chemistry II

4.) Consider the following equilibrium:

$$2 \text{ CO(g)} + \text{O}_2(\text{g}) \Rightarrow 2 \text{ CO}_2(\text{g})$$
 At 533 K, K_p = 4.56×10^8

- a.) Calculate ΔG° at 533 K, in kJ/mol, at equilibrium. At equilibrium, $\Delta G = 0$, so $\Delta G^{\circ} = - RT \ln(K)$ Use $\Delta G^{\circ} = -RT \ln(K) = -(8.314 J/(mol \cdot K))(533 K)(\ln(4.56 \times 10^8)) = -8.835 \times 10^4 J$ $\Delta G^{\circ} = -88.4 kJ/mol$
- b.) Calculate ΔS_{rxn} , given that $\Delta S^{\circ} CO = 197.7 \text{ J/K}$, $\Delta S^{\circ} O_2 = 205.1 \text{ J/K}$, and $\Delta S^{\circ} CO_2 = 213.7 \text{ J/K}$.

Use $\Delta S_{rxn} = \sum m(S^{\circ}_{products}) - \sum n(S^{\circ}_{reactants})$ $\Delta S_{rxn} = [(2)(213.7 J/K)] - [(2)(197.7 J/K) + (1)(205.1 J/K)]$ $\Delta S_{rxn} = [427.4 J/K] - [600.5 J/K] = -173.1 \rightarrow -173.1 J/K$

Check: should be decreasing since 3 moles of gas become 2 moles of gas.

c.) Calculate the heat of formation of $CO_2(g)$ in kJ/mol, given that for CO, $\Delta H_f = -110.5$ kJ/mol.

Use $\Delta G = \Delta H - T\Delta S$ to solve for ΔH (heat of reaction). - 88.4 kJ/mol = $\Delta H - (533 \text{ K})(-173.1 \times 10^{-3} \text{ kJ/K})$ $\Delta H = -88.4 \text{ kJ/mol} - 92.26 \text{ kJ} = -180.66 \text{ kJ/mol}$ Use $\Delta H_{rxn} = \sum m(H^{\circ}_{products}) - \sum n(H^{\circ}_{reactants})$ to solve for ΔH°_{f} for CO₂(g) - 180.66 kJ/mol = [(2)(x)] - [(2)(-110.5 kJ/mol) + (1)(0)] 2x = -401.66 kJ/mol x = -200.83 → ΔH°_{f} = -200.8 kJ/mol

5.) Given the following:

$Cd^{2+}(aq) + 2 e^{-} \rightarrow Cd(s)$	E [°] _{red} = - 0.403 V
$Au^{3+}(aq) + 3 e^{-} \rightarrow Au(s)$	E° _{red} = + 1.52 V

- a.) Identify the anode. Cd (more negative reduction potential)
- b.) Identify the cathode. Au (more positive reduction potential)
- c.) Write the balanced overall redox reaction between Cd and Au.
 Six electron transfer to balance, with Cd being oxidized and Au being reduced
 3 Cd(s) + 2 Au³⁺(aq) → 3 Cd²⁺(aq) + 2 Au(s)
- d.) Calculate E°_{cell} , in V. Use $E^{\circ}_{cell} = E^{\circ}_{red, cathode} - E^{\circ}_{ox, anode} = + 1.52 \text{ V} - (-0.403 \text{ V}) = 1.923 \rightarrow 1.92 \text{ V}$ e.) Calculate ΔG° in kJ/mol for the above reaction. $\Delta G^{\circ} = - nFE^{\circ}_{cell} = -(6 \text{ moles e}^{-})(96485 \text{ C/mol e}^{-})(1.92 \text{ J/C}) = -1.11 \times 10^{6} \text{ J} \rightarrow -1.11 \times 10^{3} \text{ kJ/mol}$

PRACTICE EXAM #2 (Ch. 16-19)

Chem1B, General Chemistry II

6.) Consider a radioactive atom of uranium-238 (mass: 238.0289 amu).

- a.) Write the **balanced** nuclear equation for the α -decay of uranium-238. α -decay is loss of 2 protons, 2 neutrons. $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$
- b.) Calculate the energy change, in J, associated with this nuclear reaction (the elemental product weighs 232.0381 amu and the decayed particle weighs 4.00150 amu, $m_e = 5.48580 \times 10^{-4}$ amu, $m_n = 1.00866$ amu, $m_p = 1.00728$ amu) Use $\Delta E = c^2 (\Delta m)$ mass of U nucleus = 238.0289 amu – (92 e⁻)(5.48580 × 10⁻⁴ amu/e-) = 237.97843 amu mass of Th nucleus = 232.0381 amu – (90 e-)(5.48580 × 10⁻⁴ amu/e-) = 231.98872 amu mass of He nucleus = 4.00150 amu (no e⁻) $\Delta m = (231.98872 amu + 4.00150 amu) - (237.97843 amu) = -1.98820 amu = -1.99820 g \Delta E = (2.9979 × 10⁸ m/s)^2(-1.99820 × 10⁻³ kg) = -1.78687 × 10¹⁴ <math>\rightarrow$ -1.7869 × 10¹⁴ J
- c.) Uranium-238 can undergo sequential radioactive decay. Using your answer from (1), determine the final product when the product of (1) undergoes a further **two** β -decay reactions.

```
\begin{array}{l} \beta\text{-decay is the loss of 1 neutron} \rightarrow 1 \text{ proton} + 1 \text{ e}^{-234}\\ \text{Th} \rightarrow \begin{array}{c} ^{234} \\ Pa \rightarrow \begin{array}{c} ^{234} \\ _{92} \end{array} U + 2 \begin{array}{c} ^{0} \\ _{-1} \beta \end{array} \text{ so } \begin{array}{c} ^{234} \\ 92 \end{array} U \end{array}
```

7.) Consider the following equilibrium:

 $N_2(g) + 2 O_2(g) \Rightarrow 2 NO_2(g)$ $\Delta G^{\circ} = +102.6 \text{ kJ/mol}, \Delta H^{\circ} = -67.68 \text{ kJ/mol}, \Delta S^{\circ} = -120.6 \text{ J/K}$

- a.) Calculate the equilibrium constant (K_p) for this reaction. Use $\Delta G^{\circ} = - RT \ln(K) = 102.6 \times 10^{3} J/mol = - (8.314 J/(mol \cdot K))(298 K)(ln K)$ ln (K) = -41.4<u>1</u>1, so K = e^{-41.411} = 1.03<u>5</u>6 × 10⁻¹⁸ \rightarrow K_p = **1.036** × 10⁻¹⁸
- b.) Calculate the temperature, in K, at which this equilibrium will begin to be spontaneous. Spontaneous = - ΔG , so find when $\Delta G < 0$ using $\Delta G = \Delta H^{\circ} - T\Delta S^{\circ}$ $0 = -67.68 \times 10^{3} \text{ J/mol} - (T)(-120.6 \text{ J/K})$

```
T = (67.68 \times 10^3 \text{ J/mol})/(120.6 \text{ J/K}) = 561.19 \rightarrow \text{lower than 561.2 K}
```

c.) Using your answer from (b), find the partial pressure of NO₂(g) when the system is at equilibrium at that temperature if all the partial pressures are equal. At equilibrium, $\Delta G = 0$. Find K at T = 561.2 K. $102.6 \times 10^3 \text{ J/mol} = -(8.314 \text{ J/(mol}\cdot\text{K}))(561.2 \text{ K})(\ln (\text{K}))$ $\ln(\text{K}) = -21.9\underline{89} \rightarrow \text{K} = e^{-21.989} = 2.81\underline{82} \times 10^{-10}$ Use the equilibrium constant expression, where all pressures = x $2.81\underline{82} \times 10^{-10} = \frac{(\text{M}^2)^2}{(\text{M})^2} = \text{x}^{-1}$ so $\text{x} = 3.54\underline{82} \times 10^9 \rightarrow \textbf{3.548} \times \textbf{10}^9$ atm