Chem1B, General Chemistry II
1.) Radium- 226 undergoes radioactive α-decay.
a.) Write the balanced nuclear reaction.

Loses two neutrons and two protons (He)

$$
{ }_{88}^{226} \mathrm{Ra} \rightarrow{ }_{86}^{222} \mathrm{Rn}+{ }_{2}^{4} \mathrm{He}
$$

b.) If the half-life of radium- 226 is 1.25×10^{9} years, calculate the amount of radium-226 remaining in a rock that is 1.5×10^{9} years old and originally 15 kg .
Determine the rate constant for the first order reaction.

$$
t_{1 / 2}=(0.693) / k \text {, so } k=(0.693) /\left(1.25 \times 10^{9} \text { years }\right)=5.5 \underline{4} 4 \times 10^{-10} \mathrm{yr}^{-1}
$$

For a first order reaction:

$$
\begin{aligned}
& \ln \left(N_{\mathrm{t}} / \mathrm{N}_{0}\right)=-\left(5.544 \times 10^{-10} \mathrm{yr}^{-1}\right)\left(1.5 \times 10^{9} \mathrm{yr}\right)=-0.8 \underline{3} 16 \\
& \mathrm{~N}_{\mathrm{t}} / \mathrm{N}_{0}=\mathrm{e}^{-0.8316}=0.4 \underline{3} 5 \\
& \mathrm{~N}_{\mathrm{t}}=(2.2 \underline{96})\left(\mathrm{N}_{0}\right)=(0.4 \underline{3} 5)(15 \mathrm{~kg})=6.53 \rightarrow 6.5 \mathrm{~kg} \text { of radium-226 }
\end{aligned}
$$

c.) Based on your answer from (b), how many kg of the produced element in (a) after decay are present after 1.5×10^{9} years?
Determine how many kg of radon-226 were lost.
15 kg initial -6.5 kg remaining $=\underline{8} .5 \mathrm{~kg}$ lost
Use mass numbers as mass ratio.
$\underline{8} .5 \mathrm{~kg}=(226 / 222)(\mathrm{kg} \mathrm{Rn}) \rightarrow \underline{8} .3 \rightarrow 8 \mathrm{~kg}$ radon-222 formed
2.) A solution of $0.10 \mathrm{M} \mathrm{CuSO}_{4}(\mathrm{aq})$ is electrolyzed for 1.00 hours by a current of 1.62 A . Calculate the amount of $\mathrm{Cu}(\mathrm{s})$, in g , deposited at the cathode.

Calculate the total coulombs put into the system.
(1.00 hours) $\times(60 \mathrm{~min} . / 1 \mathrm{hr}$.) $\times(60 \mathrm{sec} . / 1 \mathrm{~min}$.) $=36 \underline{0} 0 \mathrm{sec}$
$1.62 \mathrm{~A}=1.62 \mathrm{C} / \mathrm{sec} \times(36 \underline{0} \mathrm{sec})=58 \underline{3} 2 \mathrm{C}$
Convert to moles e
$5832 \mathrm{C} x\left(1\right.$ mole e$\left.{ }^{-} / 96485 \mathrm{C}\right)=0.06044$ moles e^{-}
Convert to g Cu (recall: $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$)
0.06044 moles e ${ }^{-} \times \frac{1 \text { mole Cu }}{2 \text { moles e }^{-}} \times \frac{63.546 \mathrm{~g} \mathrm{Cu}}{1 \text { mole Cu }}=1.9 \underline{2} 0 \rightarrow 1.92 \mathrm{~g} \mathrm{Cu}$
3.) Consider the following equilibrium at 298 K :

$$
\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{~s})
$$

Calculate the reduction potential (E° red) $)$ for $\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq})$, given that $\mathrm{Ag}^{+}+1 \mathrm{e}^{-} \rightarrow$ $\mathrm{Ag}(\mathrm{s})$ has a reduction potential of +1.98 V and the equilibrium constant $\left(\mathrm{K}_{\text {eq }}\right)$ is 6.29×10^{30}. Find ΔG°
$\Delta G^{\circ}=-\mathrm{RT} \ln (\mathrm{K})=-(8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K}))(298 \mathrm{~K})\left(\ln \left(6.29 \times 10^{30}\right)\right)=-1.7 \underline{5} 7 \times 10^{5} \mathrm{~J}$
Solve for E° cell
$\Delta G^{\circ}=-n F E^{\circ}{ }_{\text {cell }}$
$-1.7 \underline{5} 7 \times 10^{5} \mathrm{~J}=-(1 \mathrm{e}-)(96485 \mathrm{C} / \mathrm{mol} \mathrm{e}-)\left(\mathrm{E}^{\circ}{ }_{\text {cell }}\right) \rightarrow \mathrm{E}^{\circ}{ }_{\text {cell }}=1.8 \underline{2} 1 \mathrm{~V}$
Solve for E° red of Cu , behaving as anode (oxidized).

$$
1.8 \underline{2} 1 \mathrm{~V}=1.98 \mathrm{~V}-\mathrm{E}^{\circ}{ }_{\text {red, }, \mathrm{Cu}} \rightarrow \mathrm{E}_{\text {red, } \mathrm{Cu}}^{\circ}=1.98 \mathrm{~V}-1.8 \underline{2} 1 \mathrm{~V}=0.1 \underline{5} 8 \rightarrow \mathbf{0 . 1 6} \mathrm{~V}
$$

Chem1B, General Chemistry II
4.) Consider the following equilibrium:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(\mathrm{~g}) \quad \text { At } 533 \mathrm{~K}, \mathrm{~K}_{\mathrm{p}}=4.56 \times 10^{8}
$$

a.) Calculate $\Delta \mathrm{G}^{\circ}$ at 533 K , in $\mathrm{kJ} / \mathrm{mol}$, at equilibrium.

At equilibrium, $\Delta \mathrm{G}=0$, so $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln (\mathrm{K})$
Use $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln (\mathrm{K})=-(8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K}))(533 \mathrm{~K})\left(\ln \left(4.56 \times 10^{8}\right)\right)=-8.835 \times 10^{4} \mathrm{~J}$
$\Delta G^{\circ}=-88.4 \mathrm{~kJ} / \mathrm{mol}$
b.) Calculate $\Delta \mathrm{S}_{\mathrm{rxn}}$, given that $\Delta \mathrm{S}^{\circ} \mathrm{CO}=197.7 \mathrm{~J} / \mathrm{K}, \Delta \mathrm{S}^{\circ} \mathrm{O}_{2}=205.1 \mathrm{~J} / \mathrm{K}$, and $\Delta \mathrm{S}^{\circ} \mathrm{CO}_{2}=213.7$

J/K.
Use $\Delta \mathrm{S}_{\mathrm{rxn}}=\sum \mathrm{m}\left(\mathrm{S}^{\circ}{ }_{\text {products }}\right)-\sum \mathrm{n}\left(\mathrm{S}^{\circ}{ }_{\text {reactants }}\right)$
$\Delta S_{\text {rxn }}=[(2)(213.7 \mathrm{~J} / \mathrm{K})]-[(2)(197.7 \mathrm{~J} / \mathrm{K})+(1)(205.1 \mathrm{~J} / \mathrm{K})]$
$\Delta \mathrm{S}_{\mathrm{rxn}}=[427 . \underline{\mathrm{J}} / \mathrm{K}]-[600 . \underline{5} \mathrm{~J} / \mathrm{K}]=-173.1 \rightarrow-173.1 \mathrm{~J} / \mathrm{K}$
Check: should be decreasing since 3 moles of gas become 2 moles of gas.
c.) Calculate the heat of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ in $\mathrm{kJ} / \mathrm{mol}$, given that for $\mathrm{CO}, \Delta \mathrm{H}_{\mathrm{f}}=-110.5$
$\mathrm{kJ} / \mathrm{mol}$.
Use $\Delta G=\Delta H-T \Delta S$ to solve for ΔH (heat of reaction).
$-88.4 \mathrm{~kJ} / \mathrm{mol}=\Delta \mathrm{H}-(533 \mathrm{~K})\left(-173.1 \times 10^{-3} \mathrm{~kJ} / \mathrm{K}\right)$
$\Delta \mathrm{H}=-88.4 \mathrm{~kJ} / \mathrm{mol}-92.26 \mathrm{~kJ}=-180.66 \mathrm{~kJ} / \mathrm{mol}$
Use $\Delta \mathrm{H}_{\mathrm{rxn}}=\sum \mathrm{m}\left(\mathrm{H}^{\circ}{ }_{\text {products }}\right)-\sum \mathrm{n}\left(\mathrm{H}^{\circ}\right.$ reactants $)$ to solve for $\Delta \mathrm{H}^{\circ}$ for $\mathrm{CO}_{2}(\mathrm{~g})$
$-180.66 \mathrm{~kJ} / \mathrm{mol}=[(2)(\mathrm{x})]-[(2)(-110.5 \mathrm{~kJ} / \mathrm{mol})+(1)(0)]$
$2 x=-401.66 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{x}=-200.83 \rightarrow \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-200.8 \mathrm{~kJ} / \mathrm{mol}$
5.) Given the following:

$$
\begin{array}{ll}
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}-\mathrm{Cd}(\mathrm{~s}) & \mathrm{E}_{\text {red }}^{\circ}=-0.403 \mathrm{~V} \\
\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{~s}) & \mathrm{E}_{\text {red }}^{\circ}=+1.52 \mathrm{~V}
\end{array}
$$

a.) Identify the anode.

Cd (more negative reduction potential)
b.) Identify the cathode.

Au (more positive reduction potential)
c.) Write the balanced overall redox reaction between Cd and Au .

Six electron transfer to balance, with Cd being oxidized and Au being reduced
$3 \mathrm{Cd}(\mathrm{s})+2 \mathrm{Au}^{3+}(\mathrm{aq}) \rightarrow 3 \mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{Au}(\mathrm{s})$
d.) Calculate $E^{\circ}{ }_{\text {cell }}$, in V.

Use $\mathrm{E}^{\circ}{ }_{\text {cell }}=\mathrm{E}^{\circ}{ }_{\text {red, cathode }}-\mathrm{E}^{\circ}{ }_{\mathrm{ox}, \text { anode }}=+1.52 \mathrm{~V}-(-0.403 \mathrm{~V})=1.9 \underline{2} 3 \rightarrow 1.92 \mathrm{~V}$
e.) Calculate $\Delta \mathrm{G}^{\circ}$ in $\mathrm{kJ} / \mathrm{mol}$ for the above reaction.
$\Delta \mathrm{G}^{\circ}=-\mathrm{nFE}{ }^{\circ}{ }_{\text {cell }}=-\left(6\right.$ moles $\left.\mathrm{e}^{-}\right)\left(96485 \mathrm{C} / \mathrm{mol} \mathrm{e}^{-}\right)(1.92 \mathrm{~J} / \mathrm{C})=-1.111 \times 10^{6} \mathrm{~J} \rightarrow$
$-1.11 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$

Chem1B, General Chemistry II
6.) Consider a radioactive atom of uranium-238 (mass: 238.0289 amu).
a.) Write the balanced nuclear equation for the α-decay of uranium- 238 . α-decay is loss of 2 protons, 2 neutrons.
${ }_{92}^{238} \mathrm{U} \rightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{2}^{4} \mathrm{He}$
b.) Calculate the energy change, in J, associated with this nuclear reaction (the elemental product weighs 232.0381 amu and the decayed particle weighs $4.00150 \mathrm{amu}, \mathrm{m}_{\mathrm{e}}=$ $5.48580 \times 10^{-4} \mathrm{amu}, \mathrm{m}_{\mathrm{n}}=1.00866 \mathrm{amu}, \mathrm{m}_{\mathrm{p}}=1.00728 \mathrm{amu}$)
Use $\Delta E=c^{2}(\Delta m)$
mass of U nucleus $=238.0289 \mathrm{amu}-\left(92 \mathrm{e}^{-}\right)\left(5.48580 \times 10^{-4} \mathrm{amu} / \mathrm{e}-\right)=237.978 \underline{3} \mathrm{amu}$
mass of Th nucleus $=232.0381 \mathrm{amu}-(90 \mathrm{e}-)\left(5.48580 \times 10^{-4} \mathrm{amu} / \mathrm{e}-\right)=231.98872 \mathrm{amu}$ mass of He nucleus $=4.00150 \mathrm{amu}$ (no e ${ }^{-}$)
$\Delta \mathrm{m}=(231.988 \underline{72} \mathrm{amu}+4.00150 \mathrm{amu})-(237.978 \underline{4} 3 \mathrm{amu})=-1.988 \underline{2} 0 \mathrm{amu}=-1.998 \underline{20} \mathrm{~g}$ $\Delta \mathrm{E}=\left(2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}\left(-1.998 \underline{2} 0 \times 10^{-3} \mathrm{~kg}\right)=-1.786 \underline{8} 7 \times 10^{14} \rightarrow-1.7869 \times 10^{14} \mathrm{~J}$
c.) Uranium- 238 can undergo sequential radioactive decay. Using your answer from (1), determine the final product when the product of (1) undergoes a further two β-decay reactions.
β-decay is the loss of 1 neutron $\rightarrow 1$ proton +1 e
234
${ }_{90}^{234} \mathrm{Th} \rightarrow{ }_{91}^{234} \mathrm{~Pa} \rightarrow{ }_{92}^{234} \mathrm{U}+2{ }_{-1}^{0} \beta$ so ${ }_{92}^{234} \mathrm{U}$
7.) Consider the following equilibrium:

$$
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{G}^{\circ}=+102.6 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}^{\circ}=-67.68 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{~S}^{\circ}=-120.6 \mathrm{~J} / \mathrm{K}
$$

a.) Calculate the equilibrium constant $\left(K_{p}\right)$ for this reaction. Use $\Delta G^{\circ}=-R T \ln (K)=102.6 \times 10^{3} \mathrm{~J} / \mathrm{mol}=-(8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K}))(298 \mathrm{~K})(\operatorname{ln~K})$ $\ln (K)=-41.4 \underline{1} 1$, so $K=e^{-41.411}=1.0356 \times 10^{-18} \rightarrow K_{p}=1.036 \times 10^{-18}$
b.) Calculate the temperature, in K, at which this equilibrium will begin to be spontaneous. Spontaneous $=-\Delta G$, so find when $\Delta G<0$ using $\Delta G=\Delta H^{\circ}-T \Delta S^{\circ}$
$0=-67.68 \times 10^{3} \mathrm{~J} / \mathrm{mol}-(\mathrm{T})(-120.6 \mathrm{~J} / \mathrm{K})$
$\mathrm{T}=\left(67.68 \times 10^{3} \mathrm{~J} / \mathrm{mol}\right) /(120.6 \mathrm{~J} / \mathrm{K})=561.19 \rightarrow$ lower than 561.2 K
c.) Using your answer from (b), find the partial pressure of $\mathrm{NO}_{2}(\mathrm{~g})$ when the system is at equilibrium at that temperature if all the partial pressures are equal.
At equilibrium, $\Delta \mathrm{G}=0$. Find K at $\mathrm{T}=561.2 \mathrm{~K}$.
$102.6 \times 10^{3} \mathrm{~J} / \mathrm{mol}=-(8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K}))(561.2 \mathrm{~K})(\mathrm{In}(\mathrm{K}))$
$\ln (\mathrm{K})=-21.9 \underline{8} 9 \rightarrow K=\mathrm{e}^{-21.989}=2.81 \underline{8} 2 \times 10^{-10}$
Use the equilibrium constant expression, where all pressures $=x$
$2.81 \underline{8} 2 \times 10^{-10}=\frac{(x)^{2}}{(9)^{(x)^{2}}}=x^{-1}$ so $x=3.54 \underline{8} 2 \times 10^{9} \rightarrow 3.548 \times 10^{9} \mathrm{~atm}$

