Chem1B, General Chemistry II

1.) Predict which nuclides should be stable and which should be radioactive. F	or those that are
radioactive, predict which type of nuclear decay they are most likely to undergo	0.

- a.) ${}_{3}^{7}$ Li
- b.) ¹³⁴₅₃I
- c.) ²⁸₁₅P
- 2.) Predict the products, including their **structure**, from the following reactions. **Balance** the equations where appropriate.
 - a.) Combustion of heptane \rightarrow ?
 - b.) Hydrogenation of 2-pentene \rightarrow ?
 - c.) Hydration of cyclohexene \rightarrow ?
- 3.) Calculate the nuclear binding energy for antimony-127 that has an **atomic** mass of 126.906924 amu in (1) **J/mole**, (2) **J/atom**, and (3) **J/nucleon**.

Chem1B, General Chemistry II

 4.) Consider a molecule of tris(ethylenediamine)copper(II) nitrate ion. a.) Give the appropriate chemical formula for the complex. b.) What is the coordination number, if en is bidentate? c.) What is the oxidation state of the metal? d.) What is the overall charge on the complex? e.) What geometry will the above complex adopt? f.) Depict the crystal-field splitting pattern for the above complex, showing explicitly which d-orbitals move where, and fill it appropriately to show whether it is paramagnetic or diamagnetic (en is a strong field ligand).
g.) The above compound absorbs strongly at 595 nm. Calculate the splitting energy between the d-orbitals in J/mole.
h.) What color will the compound appear to be?
5.) Consider 2-butene. Draw its structure and the structures of all five of its isomers with the formula C_4H_8 . Indicate whether each isomer is constitutional or cis-trans in comparison to 2-butene. Also indicate the hybridization at each individual carbon atom.
6.) Explain why alkanes exhibit conformational but not cis-trans isomerization but not cis-trans whereas alkenes exhibit cis-trans but not conformational.

Chem1B, General Chemistry II

7.) Derive the correct IUPAC names for the following compounds. (21 pts)

8.) The percent natural abundance of potassium-40 is 0.0117%. The radioactive decay of these atoms occurs 89% by β -emission and the rest by other decay modes. The half-life of potassium-40 is 1.25 \times 10 9 years. Calculate the number of electrons produced per second by the potassium-40 present in a 1.00 g sample of the mineral microcline, KAlSi₃O₈. Assume that there are 365 days in a year.