Chem1B, General Chemistry II

- 1.) Predict which nuclides should be stable and which should be radioactive. For those that are radioactive, predict which type of nuclear decay they are most likely to undergo.
 - a.) ${}_{3}^{7}\text{Li ratio:}$ (7-3) = 4 neutrons/3 protons = 1.33, ratio of neutrons to protons is too high for a "light" element $\rightarrow \beta$ -emission (will be: ${}_{0}^{1}\text{n} \rightarrow {}_{1}^{1}\text{p}^{+} + {}_{1}^{0}\beta$)
 - b.) $^{134}_{53}$ I ratio: (134-53) = 81 neutrons/53 protons = 1.53, ratio of neutrons to protons is too high since Z = 50 wants a 1.4:1 ratio $\rightarrow \beta$ -emission (will be: 1_0 n $\rightarrow ^1_1$ p⁺+ 0_1 β)
 - c.) $^{28}_{15}P$ ratio: (28-15) = 13 neutrons/15 protons = 0.867, ratio of neutrons to protons is too low for a "light" element \rightarrow positron-emission (will be $^{1}_{0}p^{+} \rightarrow ^{1}_{0}n + ^{0}_{+1}\beta$)
- 2.) Predict the products, including their **structure**, from the following reactions. **Balance** the equations where appropriate.
 - a.) Combustion of heptane \rightarrow ?

Heptane: alkane, 7 carbons, 7x2 + 2 = 16 hydrogens

$$C_7H_{16} + 11 O_2(g) \rightarrow 7 CO_2(g) + 8 H_2O(g)$$

b.) Hydrogenation of 2-pentene \rightarrow ?

Addition of H₂ around the double bond

c.) Hydration of cyclohexene \rightarrow ?

Addition of H₂O around the double bond

3.) Calculate the nuclear binding energy for antimony-127 that has an **atomic** mass of 126.906924 amu in (1) **J/mole**, (2) **J/atom**, and (3) **J/nucleon**.

 $126.906924 \text{ amu} - (51)(5.485799 \times 10^{-4} \text{ amu}) = 126.906924 \text{ amu} - 0.027977574 \text{ amu}$ nuclear mass = 126.8789464 amu

(51)(1.007276 amu) + (127-51)(1.008665 amu) = 128.029616 amu, mass of nucleons Calculate mass defect and convert to kg/mole.

128.02961 $\underline{6}$ amu – 126.87894 $\underline{6}$ 4 amu = 1.15066 $\underline{9}$ 5 amu/atom× $\frac{1 \text{ kg}}{1000 \text{ g}}$ = 1.15066 $\underline{9}$ 5 × 10⁻³ kg/mol $\Delta E = (1.15066\underline{9}5 \times 10^{-3} \text{ kg/mol})(2.9979 \times 10^{8} \text{ m/s})^{2} = 1.03415\underline{3}2 \times 10^{14}$

- (1) 1.034153 × 10¹⁴ J/mol
- (2) $1.03415\underline{3}2 \times 10^{14} \text{ J/mole} \times \frac{1 \text{ mole}}{6.022 \times 10^{23} \text{ atom}} = 1.71729\underline{2}0 \times 10^{-10} \rightarrow \textbf{1.717292} \times \textbf{10}^{-10}$ **J/atom**
- (3) $1.717292 \times 10^{-10} \text{ J/atom} \times \frac{1 \text{ atom}}{127 \text{ nucleons}} = 1.3521984 \times 10^{-12} \rightarrow 1.35298 \times 10^{-12} \text{ J/nucleon}$

Chem1B, General Chemistry II

4.) Consider a molecule of tris(ethylenediamine)copper(II) nitrate ion.

a.) Give the appropriate chemical formula for the complex. $[Cu(en)_3](NO_3)_2$

b.) What is the **coordination number**, if en is bidentate? 6 (3x2)

d.) What is the **overall charge** on the complex? +2 (only metal)
e.) What **geometry** will the above complex adopt? octahedral

f.) Depict the crystal-field splitting pattern for the above complex, showing explicitly which d-orbitals move where, and fill it appropriately to show whether it is **paramagnetic** or **diamagnetic** (en is a **strong field** ligand).

octahedral geometry: splits into e_g (d_{z2} ; d_{x2-y2} , higher) and t_{2g} (d_{xz} , d_{yz} , d_{xy} , lower) Cu^{2+} has 9 d-electrons.

paramagnetic: unpaired electron in the eg

g.) The above compound absorbs strongly at 595 nm. Calculate the **splitting energy** between the d-orbitals in J/mole.

$$\begin{split} &E = \left(6.626 \times 10^{-34} \text{ J*s}\right) \left(\frac{3.00 \times 10^8 \text{ m/s}}{5.95 \times 10^{-7} \text{ m}}\right) = 3.3 \underline{40} \times 10^{-19} \text{ J/atom} \\ &\frac{3.340 \times 10^{-19} \text{J}}{1 \text{ atom}} \times \frac{6.022 \times 10^{23} \text{ atoms}}{1 \text{ mole}} = 2.0 \underline{1}1 \times 10^5 \rightarrow \textbf{2.01} \times \textbf{10}^5 \text{ J/mole} \end{split}$$

h.) What color will the compound appear to be?

Absorbs 595 nm, so will appear as the complement \rightarrow

5.) Consider 2-butene. Draw its structure and the structures of all **five** of its isomers with the formula C_4H_8 . Indicate whether each isomer is **constitutional** or **cis-trans** in comparison to 2-butene. Also indicate the **hybridization** at each individual carbon atom.

6.) Explain **why** alkanes exhibit conformational but not cis-trans isomerization but not cis-trans whereas alkenes exhibit cis-trans but not conformational.

Alkanes have free rotation around each bond due to having only s-overlap from the single bonds. All four hybrids are equally spread apart.

Alkenes and alkynes do not have free rotation due to the p-overlap and their remaining sp² hybrids are 120 degrees from each other.

Chem1B, General Chemistry II

7.) Derive the correct IUPAC names for the following compounds. (21 pts)

- (A) 4-methyl-2-hexyne
- (B) 6-ethyl-5-isopropyl-2-octene
- (C) **4-tert-butyl-2,3,5-trimethylheptane**
- (D) 1-ethyl-2-methylbenzene or o-ethylmethylbenzene
- (E) <u>3-sec-butyl-1,3-pentadiene</u>
- 8.) The percent natural abundance of potassium-40 is 0.0117%. The radioactive decay of these atoms occurs 89% by β-emission and the rest by other decay modes. The half-life of potassium-40 is 1.25×10^9 years. Calculate the number of electrons produced per second by the potassium-40 present in a 1.00 g sample of the mineral microcline, KAlSi₃O₈. Assume that there are 365 days in a year.

$$1.25 \times 10^9 \text{ years} \times \frac{365 \text{ days}}{1 \text{ year}} \times \frac{24 \text{ hours}}{1 \text{ days}} \times \frac{60 \text{ minutes}}{1 \text{ hour}} \times \frac{60 \text{ seconds}}{1 \text{ minute}} = 3.9 \pm 2 \times 10^{16} \text{ seconds}$$

 $3.94 \times 10^{16} \text{ seconds} = \frac{\ln(2)}{k} \Rightarrow k = 1.7 \pm 8 \times 10^{-17} \text{ sec}^{-1}$, number of decays per atom per second Molar mass of microline: 281.05 g/mol

1.00 g microline ×
$$\frac{1 \text{ mole microline}}{281.05 \text{ g microline}}$$
 × $\frac{1 \text{ mole K}}{1 \text{ mole microline}}$ × $\frac{0.0117 \text{ moles}^{40} \text{K}}{100 \text{ mole K}}$ × $\frac{6.022 \times 10^{23} \text{ atoms}}{1 \text{ mole}^{40} \text{K}}$
= $2.506 \times 10^{17} \text{ atoms K-40}$

 $(1.758 \times 10^{-17} \text{ sec}^{-1})(2.506 \times 10^{17} \text{ atoms}) = 4.410 \rightarrow 4.41 \text{ electrons produced per second}$