Thermodynamics

Chem1B, General Chemistry II

- **System:** What you are studying (usually the reaction)
- **Surroundings:** Everything else (outside solution, beaker, air, etc.)
- **Universe** = system + surroundings

The **system** and **surroundings** always work opposite each other.

If the **system** gains, the **surroundings** lose

If the system loses, the surroundings gain

State Functions are path-independent and always capitalized (i.e., elevation)

Path-dependent functions change based on distance and are lower case (i.e., work done)

- Energy (E): the ability to do work
- Kinetic Energy (KE): related to movement or motion
- Potential Energy (PE): related to position or composition
- **Total Energy** = kinetic energy (KE) + potential energy (PE)

Internal Energy (ΔΕ/U): sum of kinetic and potential energy in a system

Always measured as the *change* ($\Delta E = E_{final} - E_{initial}$)

In a system, $\Delta E = q + w$

- **Heat (q)**: transfer of thermal energy
- Work (w): energy used to move an object against a force

For a system, the signs matter.

If q is **absorbed**, the sign is **positive**. If q is **released**, the sign is **negative**.

If w is done **on** a system, the sign is **positive**. If w is done **by** a system, the sign is **negative**.

For gases, work is specifically **pressure-volume (PV) work**, $w = -P\Delta V$

If a gas **expands** $(+\Delta V)$ against an external pressure, the system is **doing** work.

If a gas compresses (- ΔV) by an external pressure, the system is **being worked on**.

Enthalpy (ΔH): heat flow in a constant-pressure (**isobaric**) system

$$\Delta H = H_{products} - H_{reactants}$$

In a system, $\Delta H = \Delta E + P\Delta V$

With constant pressure, $\Delta E = q + w$ and $w = -P\Delta V$

so that
$$\Delta H = (q + w) + (-w) = q_p$$

The sign on q determines the sign on ΔH .

If the system absorbs heat, ΔH is **positive (endothermic).**

If the system releases heat, ΔH is **negative (exothermic)**.

Four ways to determine the enthalpy of a reaction:

- 1.) Calorimetry (coffee-cup or bomb, using $q = mC_s\Delta T$)
- 2.) Hess's Law (known heats of reactions summed together)
- 3.) Enthalpies of Formation ($\Delta H^{\circ}_{rxn} = \sum \Delta H^{\circ}_{products} \sum \Delta H^{\circ}_{reactants}$)
- 4.) Bond Enthalpies ($\Delta H_{rxn} = \sum \Delta H_{bonds \ broken} \sum \Delta H_{bonds \ formed}$)

Standard Conditions (°): P = 1 atm, T = 298 K, concentrations = 1 M