PRACTICE EXAM \#4

Chem20, Elementary Chemistry
1.) For each of the following compounds, draw the correct Lewis structure and indicate the expected electronic AND molecular geometries. Indicate whether the molecule is polar or nonpolar. Be sure to include ALL possible resonance structures where applicable. (30 pts)

Element	O	H	C	N	B
$\mathbf{e N}$	3.5	2.1	2.5	3.0	2.0

a.) O_{3}

Total: (3)(6 e $\left.{ }^{-}\right)=18$ total e^{-}
Used: 2 bonds $\times\left(2 \mathrm{e}^{-}\right)=4$ used e^{-}
Needed: 6+4+6=16 needed e
18 total -4 used -16 needed $=-2 / 2 \rightarrow 1$ more bond, with resonance.
All bonds are nonpolar ($3.5-3.5=0$), so the molecule is nonpolar.

2 bonding +1 nonbonding groups $=3$ total electron groups
ELECTRONIC _trigonal planar
MOLECULAR bent
b.) HCN (the carbon is central)

Total: $(1)\left(1 \mathrm{e}^{-}\right)+(1)\left(4 \mathrm{e}^{-}\right)+(1)\left(5 \mathrm{e}^{-}\right)=10$ total e^{-}
Used: 2 bonds $\times\left(2 e^{-}\right)=4$ used e^{-}
Needed: $4+6=10$ needed e^{-}, so 10 total -4 used -10 needed $=-4 / 2 \rightarrow 2$ more bonds No resonance; H cannot form a multiple bond.

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{~N}:
$$

$\mathrm{H}-\mathrm{C}$ bond is nonpolar (2.5-2.1 = 0.4), $\mathrm{C}-\mathrm{N}$ bond is polar (3.0-2.5=0.5), so the molecule is polar (dipole does not cancel).
2 bonding +0 nonbonding groups $=2$ total electron groups
ELECTRONIC_linear_MOLECULAR_linear
c.) BH_{3}

Total: (1)(3 $\left.\mathrm{e}^{-}\right)+(3)\left(1 \mathrm{e}^{-}\right)=6$ total e^{-}
Used: 3 bonds $\times\left(2 \mathrm{e}^{-}\right)=6$ used e^{-}
Needed: 2 needed é, so 6 total -6 used -2 needed $=-2$, but no multiple bonds possible on H. Incomplete octet around B.

B-H bond is nonpolar (2.1-2.0 = 0.1), so the molecule is nonpolar.
3 bonding +0 nonbonding groups $=3$ total electron groups
ELECTRONIC _trigonal planar
MOLECULAR _trigonal planar
2.) A sample of $\mathrm{NH}_{3}(\mathrm{~g})$ in a 452 mL container has a pressure of 605 torr. A closed valve connects it to a 623 mL container that contains a sample of $\mathrm{CH}_{4}(\mathrm{~g})$ at a pressure of 598 torr. When the valve is opened, the two gases are allowed to mix and travel freely between both containers. Assume the valve adds no volume. (23 pts)
a.) What is the new partial pressure of $\mathrm{NH}_{3}(\mathrm{~g})$ after the valve is opened?

Use Boyle's Law: $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$P_{1}=605$ torr, $\mathrm{V}_{1}=452 \mathrm{~mL}, \mathrm{P}_{2}=$?, $\mathrm{V}_{2}=452 \mathrm{~mL}+623 \mathrm{~mL}=107 \underline{5} \mathrm{~mL}$
$(605$ torr $)(452 \mathrm{~mL})=\left(\mathrm{P}_{2}\right)(107 \underline{\mathrm{~mL}})$
$(27 \underline{3} 460$ torr $\cdot \mathrm{mL})=\left(\mathrm{P}_{2}\right)(107 \underline{5} \mathrm{~mL})$
$\mathrm{P}_{2}=254.3 \rightarrow \mathbf{2 5 4}$ torr
b.) What is the new partial pressure of $\mathrm{CH}_{4}(\mathrm{~g})$ after the valve is opened?

Use Boyle's Law: $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$\mathrm{P}_{1}=598$ torr, $\mathrm{V}_{1}=623 \mathrm{~mL}, \mathrm{P}_{2}=$? , $\mathrm{V}_{2}=623 \mathrm{~mL}+452 \mathrm{~mL}=107 \underline{5} \mathrm{~mL}$
(598 torr) $(623 \mathrm{~mL})=\left(\mathrm{P}_{2}\right)(107 \underline{5} \mathrm{~mL})$
(372 2554 torr $\cdot \mathrm{mL})=\left(\mathrm{P}_{2}\right)(107 \underline{5} \mathrm{~mL}$
$P_{2}=34 \underline{6} .5 \rightarrow 347$ torr
c.) What is the total pressure of the mixture of $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{CH}_{4}(\mathrm{~g})$?

Use Dalton's Law of Partial Pressure: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{NH} 3}+\mathrm{P}_{\mathrm{CH} 4}$
$\mathrm{P}_{\mathrm{T}}=254$ torr +347 torr $=60 \underline{1} \boldsymbol{\rightarrow} 601$ torr
3.) Complete the following statements. (12 pts)
a.) Kinetic Molecular Theory assumes that gas particles have no volume \qquad meaning that they take up no space and behave as points.
b.) The Duet Rule for Lewis dot structures applies to two elements: _hydrogen and __helium , whose valence shell is the $\mathrm{n}=1$ level.
c.) A(n) __perfect (nonpolar) covalent bond forms between two atoms that have a difference in electronegativity between $0.0-0.4$.
4.) Consider the combustion of propane gas by the following reaction.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

The reaction was carried out in a 1.20 L container at $25^{\circ} \mathrm{C}$. Initially, 0.365 mols of $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$ were added to $1.27 \mathrm{mols}_{2}(\mathrm{~g})$ and then allowed to fully react. (35 pts)
a.) Determine the limiting reactant and the theoretical yield of $\mathrm{CO}_{2}(\mathrm{~g})$, in mols.

Convert each reactant into mols $\mathrm{CO}_{2}(\mathrm{~g})$ to find the least produced.
$0.365 \mathrm{mols} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{3 \mathrm{mols} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}=1.0 \underline{9} 6 \mathrm{mols} \mathrm{CO}$
$1.27 \mathrm{mols} \mathrm{O}_{2} \times \frac{3 \mathrm{mols} \mathrm{CO}_{2}}{5 \mathrm{mols}_{2}}=0.762 \mathrm{mols} \mathrm{CO}$

Limiting Reactant: $\mathrm{O}_{2}(\mathrm{~g})$, Theoretical Yield: 0.762 mols $\mathrm{CO}_{2}(\mathrm{~g})$

b.) What is the partial pressure in atm of the leftover reactant in excess?

Convert theoretical yield back to reactant in excess and subtract from the initial.
0.762 mols $\mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}{3 \mathrm{molsCo}_{2}}=0.254 \mathrm{mols}_{3} \mathrm{H}_{8}$ used
0.365 mols $\mathrm{C}_{3} \mathrm{H}_{8}$ initial $-0.25 \underline{4}$ mols $\mathrm{C}_{3} \mathrm{H}_{8}$ used $=0.11 \underline{1}$ mols $\mathrm{C}_{3} \mathrm{H}_{8}$ in excess

Use the Ideal Gas Law ($\mathrm{PV}=\mathrm{nRT}$) to solve for P .
$\mathrm{P}=$? , $\mathrm{V}=1.20 \mathrm{~L}, \mathrm{n}=0.111 \underline{\mathrm{mols} \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{K}) \text {, }, \text {, }, \text {, }}$
$\mathrm{T}=25+273.15=298.15 \mathrm{~K}$
$(P)(1.20 \mathrm{~L})=(0.11 \underline{1} \mathrm{mols})(0.08206 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{K}))(298.15 \mathrm{~K})$
$(P)(1.20 \mathrm{~L})=(2.7 \underline{1} 5 \mathrm{~L} \cdot \mathrm{~atm})$
$\mathrm{P}=2.2 \underline{6} 3 \rightarrow \mathbf{2 . 2 6}$ atm
c.) The total pressure of the mixture of water vapor, $\mathrm{CO}_{2}(\mathrm{~g})$, and reactant was 5.22 atm . The vapor pressure of water at this temperature is 23.8 mmHg . What is the partial pressure of $\mathrm{CO}_{2}(\mathrm{~g})$ actually collected, in atm?

Convert 23.8 mmHg into atm.
$23.8 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=0.031 \underline{3} 1 \mathrm{~atm}$
Use Dalton's Law to solve for $\mathrm{P}_{\mathrm{co2}}$: $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}+\mathrm{P}_{\mathrm{CH} 8}+\mathrm{P}_{\mathrm{CO} 2}$
$5.22 \mathrm{~atm}=(0.03131 \mathrm{~atm})+(2.26 \mathrm{~atm})+\mathrm{P}_{\mathrm{cO} 2}$
$\mathrm{P}_{\mathrm{CO} 2}=2.9 \underline{2} 8 \rightarrow 2.93$ atm
d.) Calculate the percent yield of $\mathrm{CO}_{2}(\mathrm{~g})$.

Use the Ideal Gas Law ($\mathrm{PV}=\mathrm{nRT}$) to solve for the actual yield of $\mathrm{CO}_{2}(\mathrm{~g})$, in mols.
$\mathrm{P}=2.93 \mathrm{~atm}, \mathrm{~V}=1.20 \mathrm{~L}, \mathrm{n}=$? , $\mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{K}), \mathrm{T}=298.15 \mathrm{~K}$
$(2.93 \mathrm{~atm})(1.20 \mathrm{~L})=(\mathrm{n})(0.08206 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{K}))(298.15 \mathrm{~K})$
$3.516 \mathrm{~L} \cdot \mathrm{~atm}=(\mathrm{n})(24.46 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol})$
$\mathrm{n}=0.14 \underline{3} 7 \mathrm{mols} \mathrm{CO} 2$
Use the percent yield equation (\% yield = actual yield/theoretical yield x 100\%).
$\%$ yield $=\frac{0.144 \mathrm{mols}}{0.762 \mathrm{mols}} \times 100 \%=18.85 \rightarrow \mathbf{1 8 . 9} \%$ yield

