Chem20, Elementary Chemistry
1.) At $25^{\circ} \mathrm{C}, 81 \mathrm{~g}$ of magnesium bromide is dissolved into 100.0 g of liquid water. (18 pts)
a.) What is the concentration of $\mathrm{MgBr}_{2}(\mathrm{aq})$ in units of mass percent?
b.) What is this concentration in units of molality? (MW of $\mathrm{MgBr}_{2}=184.113 \mathrm{~g} / \mathrm{mol}$)
c.) If 81 g of magnesium bromide was diluted to 105 mL with water, what would the concentration of this solution be in units of molarity?
2.) Fill in the blanks. (15 pts)
a.) A conjugate base is the product after a(n) \qquad transfers a proton.
b.) If a solution contains more than the equilibrium amount of solute, the solution is called
c.) Dispersion forces are the results of a(n) \qquad dipole moment created by an unequal distribution of electrons around the nucleus.
d.) If, when dissolved in aqueous solution, a compound completely dissociates and creates H^{+}ions, it is called $\mathrm{a}(\mathrm{n})$
3.) To determine the concentration of an unknown solution of hydroiodic acid, a titration was performed with a 1.3 M aqueous sodium hydroxide solution. The titration required 27.8 mL of sodium hydroxide to fully neutralize 12.9 mL of the hydroiodic acid solution. (15 pts)
a.) Write the balanced chemical equation for the acid-base neutralization reaction. CIRCLE the Arrhenius base. BOX the Brønsted-Lowry acid.
b.) What is the concentration of the acid, in units of molarity?
4.) An experimental procedure calls for 672 mL of a 9.1 M solution of ammonium hydroxide. The stock solution of $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$ available is 17.8 M . What volume of the stock solution should be diluted to 672 mL to obtain the desired 9.1 M ? (15 pts)
5.) The heat of fusion ($\Delta \mathrm{H}_{\text {fus }}$) for water is $6.02 \mathrm{~kJ} / \mathrm{mol}$ and the specific heat capacity for liquid water is $4.184 \mathrm{~J}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}$. A sample of 112.6 g of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ was kept initially at $25.0^{\circ} \mathrm{C}$. How many grams of $\mathrm{H}_{2} \mathrm{O}$ (s) would need to be added to lower the temperature to $8.0^{\circ} \mathrm{C}$? (20 pts)
6.) For the following compounds, list what intermolecular forces are present. (17 pts)
a.) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
b.) C_{60}
c.) SeH_{2} (polar)
d.) $\mathrm{C}_{2} \mathrm{H}_{6}$ (non-polar)
e.) Which compound will have the highest surface tension? \qquad
f.) Which compound will have the highest vapor pressure? \qquad

