| DATA | Trial 1 | Trial 2 | Trial 3 | |--|---------|---------|---------| | Mass of Empty Cups + | g | g | | | Mass of Cups + Lid and
Water | g | g | | | Mass of Water | g | g | | | Mass of Metal | g | g | | | DATA | IIIdi I | 11101 2 | 11101 5 | | DATA | Trial 1 | Trial 2 | Trial 3 | | | °C | °C | 111013 | | Initial Temperature of
Water
Initial Temperature of | | | | | Initial Temperature of
Water | °C | °C | | | Initial Temperature of Water Initial Temperature of Metal Final Temperature of | °C °C | °C | | | DATA | Trial 1 | Trial 2 | Trial 3 | |-------------------------------------|---------|---------|----------| | Mass of Empty Cups +
Lid | g | g | ! | | Mass of Cups + Lid and
Water | g | g | | | Mass of Water | g | g | | | Mass of Metal | g | g | { | | DATA | Trial 1 | Trial 2 | Trial 3 | | Initial Temperature of Water | °C | °C | °(| | Initial Temperature of Metal | °C | °C | °(| | Final Temperature of Water + Metal | °C | °C | °(| | Specific Heat Capacity of the Metal | J/g °C | J/g °C | J/g °C | | or the wetar | | | | | NAME: | | | | |--|--|--|--| | Measuring the Heat Capacity of Metals IN-LAB ASSIGNMENT | | | | | POST-LAB ASSIGNMENT (also include p. 32-33 in the lab manual) | | | | | 1.) Calculate the heat absorbed, in J, when 32-grams of aluminum are heated from 28°C to 85°C. | | | | | 2.) Calculate the heat absorbed, in J, when 32-grams of tungsten are heated from 28°C to 85°C. | | | | | 3.) Explain the difference between your answers in questions 1 and 2. | | | | | 4.) A block of metal weighing 65g was heated to 100.0° C. The warm metal was quickly transferred to an insulated container holding 75g of water at 15.0° C. The metal and water finally reached 18.7° C. Calculate the specific heat of the metal, in J/g $^{\circ}$ C. | | | | | | | | |