DATA	Trial 1	Trial 2	Trial 3
Mass of Empty Cups +	g	g	
Mass of Cups + Lid and Water	g	g	
Mass of Water	g	g	
Mass of Metal	g	g	
DATA	IIIdi I	11101 2	11101 5
DATA	Trial 1	Trial 2	Trial 3
	°C	°C	111013
Initial Temperature of Water Initial Temperature of			
Initial Temperature of Water	°C	°C	
Initial Temperature of Water Initial Temperature of Metal Final Temperature of	°C °C	°C	

DATA	Trial 1	Trial 2	Trial 3
Mass of Empty Cups + Lid	g	g	!
Mass of Cups + Lid and Water	g	g	
Mass of Water	g	g	
Mass of Metal	g	g	{
DATA	Trial 1	Trial 2	Trial 3
Initial Temperature of Water	°C	°C	°(
Initial Temperature of Metal	°C	°C	°(
Final Temperature of Water + Metal	°C	°C	°(
Specific Heat Capacity of the Metal	J/g °C	J/g °C	J/g °C
or the wetar			

NAME:			
Measuring the Heat Capacity of Metals IN-LAB ASSIGNMENT			
POST-LAB ASSIGNMENT (also include p. 32-33 in the lab manual)			
1.) Calculate the heat absorbed, in J, when 32-grams of aluminum are heated from 28°C to 85°C.			
2.) Calculate the heat absorbed, in J, when 32-grams of tungsten are heated from 28°C to 85°C.			
3.) Explain the difference between your answers in questions 1 and 2.			
4.) A block of metal weighing 65g was heated to 100.0° C. The warm metal was quickly transferred to an insulated container holding 75g of water at 15.0° C. The metal and water finally reached 18.7° C. Calculate the specific heat of the metal, in J/g $^{\circ}$ C.			