

Chapter 12Nutrition

Nutrients

macronutrients: large required daily quantities carbohydrates, lipids, proteins ① Start Here →

2 Check Calories

micronutrients: small required (3) Limit these Nutrients
daily quantities
vitamins, minerals

Also required: water and fiber

4 Get Enough of these Nutrients

(5) Footnote

<u>Daily Reference Values (DRV)</u>: based on a 2,000 Cal. diet

Sample label for Macaroni & Cheese

- 6 Quick Guide to % DV
 - 5% or less is Low
- 20% or more is High

Food Pyramid

Calories

Daily caloric intake varies by weight, gender, and level of activity.

basal requirement:
calories needed to
maintain a resting body
(no activity).

Recommended Daily Calorie Intake							
	Ma	les	Females				
	Activity	/ level*	Activity level*				
Age	Sedentary	Moderate	Sedentary	Moderate			
2	1000	1000	1000	1000			
3	1000	1400	1000	1200			
4-5	1200	1400	1200	1400			
6	1400	1600	1200	1400			
7	1400	1600	1200	1600			
8	1400	1600	1400	1600			
9	1600	1800	1400	1600			
10	1600	1800	1400	1800			
11	1800	2000	1600	1800			
12	1800	2200	1600	2000			
13	2000	2200	1600	2000			
14	2000	2400	1800	2000			
15	2200	2600	1800	2000			
16-18	2400	2800	1800	2000			
19-20	2600	2800	2000	2200			
21-25	2400	2800	2000	2200			
26-40	2400	2600	1800	2000			
41-45	2200	2600	1800	2000			
46-50	2200	2400	1800	2000			
51-60	2200	2400	1600	1800			
61-65	2000	2400	1600	1800			
66 and up	2000	2200	1600	1800			

Some people need even fewer calories each day such as children and inactive adults. Women need fewer calories than men at all ages.

Body Mass Index (BMI)

obesity: a person with a BMI of 30 or greater.

$$BMI = \left\{ \frac{WEIGHT (pounds)}{HEIGHT (inches)^{2}} \right\} \times 703$$

		Weight in Pounds													
		120	130	140	150	160	170	180	190	200	210	220	230	240	250
	4'6	29	31	34	36	39	41	43	46	48	51	53	56	58	60
	4'8	27	29	31	34	36	38	40	43	45	47	49	52	54	56
	4'10	2.5	27	29	31	34	36	38	40	42	44	46	48	50	52
	5'0	23	2.5	27	29	31	33	3.5	37	39	41	43	45	47	49
900	5'2	22	24	26	27	29	31	33	35	37	38	40	42	44	46
d Inc	5'4	21	22	24	26	28	29	3.1	33	34	36	38	40	41	43
st and	5'6	19	21	23	24	26	27	29	31	32	34	36	37	39	40
) Fee	5'8	18	20	21	23	24	26	27	29	30	32	34	35	37	38
Height in Feet and Inches	5°10	17	19	20	22	23	24	26	27	29	30	32	33	35	36
He	6'0	16	18	19	20	22	23	24	26	27	28	30	31	33	34
	6'2	1.5	17	18	19	21	22	23	24	26	27	28	30	31	32
	6'4	1.5	16	17	18	20	21	22	23	24	26	27	28	29	30
	6'6	1.4	1.5	16	1.7	19	20	21	22	23	24	25	27	28	29
	6'8	13	14	15	17	18	19	20	21	22	23	24	25	26	28

Overweight

Obese

Healthy Weight

- BMI does not take into account relative density of muscle versus fat.
- BMI does not take into account physical activity level.

Dieting

THE VICIOUS DIET CYCLE

A pound of body fat is approximately equivalent to 3,500 Cal. of energy.

Reducing caloric intake will cause the body to start using up its stores to convert to energy: both fat and proteins (muscle mass).

Carbohydrates

Primary source of energy in the body.

simple: mono- or disaccharides

complex: polysaccharides (starch)

Processing Carbohydrates

<u>Recommended</u>: 48% complex carbohydrates and natural sugars, 10% refined sugars (58% total) <u>Reality</u>: 28% complex carbohydrates and natural sugars, 18% refined (46% total)

Polysaccharides must be hydrolyzed to monosaccharides to be metabolized.

Blood Glucose Levels

D-glucose is called "blood sugar".

In healthy humans, almost all glucose is fully metabolized and none appears as waste.

Diabetics cannot fully metabolize all blood glucose.

Recommended Intake: 130 g/day

Lipids

Recommended: 10% saturated, 10% monounsaturated, 10% polyunsaturated (30% total)

Reality: 16% saturated, 19% monounsaturated, 7% polyunsaturated (42% total)

elaidic acid: found in hydrogenated vegetable oil

Processing Fats

About 95% of dietary lipids are fats and oils (triglycerides); the rest are complex or cholesterol.

Bile increase lipid solubility in aqueous solution before hydrolysis.

Linolenic and linoleic acid, both found in vegetable oils, are essential lipids.

Proteins

Recommended: 12% proteins

Reality: 12% proteins

Essential amino acids cannot be synthesized by the body and must be consumed in the diet.

Age Group	Grams of Protein Needed Each Day
Children ages 1 - 3	13
Children ages 4 - 8	19
Children ages 9 - 13	34
Girls ages 14 - 18	46
Boys ages 14 - 18	52
Women ages 19 - 70+	46
Men ages 19 - 70+	56

Proteins are **not stored** by the body; excess is metabolized as fat instead.

Essential Amino Acids

nonessential amino acids: can be synthesized by the body essential amino acids: must be consumed through diet; cannot be synthesized by the body.

complete protein: protein source that contains all 10 essential amino acids

Most proteins from meat, fish, eggs, and dairy are "complete".

Gelatin and most plant proteins are incomplete (low in methionine).

Essential	Nonessential		
Isoleucine	Alanine		
Leucine	Asparagine		
Lysine	Aspartic Acid		
Methionine	Cysteine*		
Phenylalanine	Glutamic Acid		
Threonine	Glutamine*		
Tryptophan	Glycine*		
Valine	Proline*		
	Serine*		
	Tyrosine*		
	Arginine*		
	Histidine*		

Vitamins

Table 14. Dietary Reference Intake: Recommended Dietary Allowance and Adequate Intake

	Infants 0-6 mo	Infants 7-12 mo	Children 1-3 y	Children 4-8 y	Males 9-13 y	Males 14-18 y	Females 9-13 y	Females 14-18 y
S	0-01110	7-12 1110	1-3 y	4-0 y	9-13 y	14-16 y	9-13 y	14-10 y
Vitamin A (μg/d)	400	500	300	400	600	900	600	700
Vitamin C (mg/d)	40	50	15	25	45	75	45	65
Vitamin E (mg/d)	4	5	6	7	11	15	11	15
Vitamin K (μg/d)	2.0	2.5	30	55	60	75	60	75
Thiamin (mg/d)	0.2	0.3	0.5	0.6	0.9	1.2	0.9	1.0
Riboflavin (mg/d)	0.3	0.4	0.5	0.6	0.9	1.3	0.9	1.0
Niacin (mg/d; NE)	2*	4	6	8	12	16	12	14
Vitamin B ₆ (mg/d)	0.1	0.3	0.5	0.6	1.0	1.3	1.0	1.2
Folate (μg/d)	65	80	150	200	300	400	300	400
Vitamin B ₁₂ (μg/d)	0.4	0.5	0.9	1.2	1.8	2.4	1.8	2.4
Pantothenic Acid (mg/d)	1.7	1.8	2	3	4	5	4	5
Biotin (μg/d)	5	6	8	12	20	25	20	25
Copper (µg/d)	200	220	340	440	700	890	700	890
Selenium (μg/d)	15	20	20	30	40	55	40	55
Zinc (mg/d)	2	3	3	5	8	11	8	9

Note: RDAs are in bold type; Als are in ordinary type.

Source: Health Canada: http://www.hc-sc.gc.ca/fn-an/alt_formats/hpfb-dgpsa/pdf/nutrition/dri_tables-eng.pdf. Reprinted with the permission of the Minister of Public Works and Government Services, Canada, 2008.

^{*}As preformed niacin, not niacin equivalents (NE) for this age group.

Minerals

Honey: Minerals (Per 100g)				
		%DV		
Calcium	6.0mg	1%		
Iron	0.4mg	2%		
Magnesium	2.0 mg	0%		
Phosphorus	4.0mg	0%		
Potassium	52.0mg	1%		
Sodium	4.0mg	0%		
Zinc	0.2mg	1%		
Manganese	0.1mg	4%		
Selenium	0.8mcg	1%		
Fluoride	7.0 mcg			

// // // Vitamins // // //				
Nutrient	Daily Values			
Vitamin C	60 mg			
Thiamin	1.5 mg			
Riboflavin	1.7 mg			
Niacin	20 mg			
Pathothenic				
Acid	10 mg			
Vitamin B6	2 mg			
Folate	400 mcg			
Vitamin B12	6 mcg			
Vitamin A	5000 IU			
Vitamin E	30 IU			
Vitamin K	80 mcg			

Minerals					
Nutrient	· Daily Values				
Calcium	1000 mg				
Iodine	150 mcg				
Iron	18 mg				
Magnesium	400 mg				
Phosphorus	1000 mg				
Potassium	3500 mg				
Sodium	< 2400 mg				
Zinc	15 mg				
Copper	2 mg				
Manganese	2 mg				
Selenium	70 mcg				

Water

Water makes up 60% of the average person's body weight.

Age (Years)	Total Wate (MALES Lit		Total Water Intake (FEMALES Litres/Day)		
	Least Active Median	Most Active Median	Least Active Median	Most Active Median	
8-16	2.11	2.69	1.78	2.29	
17-18	2.04	3.35	1.90	2.74	
19-30	3.16	3.78	2.60	2.93	
31-50	3.54	3.77	2.52	3.16	
51-70	3.22	3.42	2.81	3.06	
71+	2.54	3.05	2.33	2.75	

Daily intake is about 1,200-1,500 mL in addition to water from food.

Energy

<u>nuclear fusion</u>: 4 H → He + ENERGY (e⁻ capture)

photosynthesis:

$$6 CO2 + 6 H2O + ENERGY$$

$$\rightarrow C6H12O6 + 6 O2$$
GLUCOSE

cellular respiration: $C_6H_{12}O_6 + O_2 \rightarrow C_0$ 6 $CO_2 + 6 H_2O + energy (ATP)$

Energy Flow

Metabolism

metabolism: all chemical reactions in a living cell

<u>catabolism</u>: breakdown of molecules

anabolism: build up of molecules

Stage I: Digestion

proteins
$$\rightarrow$$
 amino acids H_2N $\stackrel{R}{\longrightarrow}$ NH $\stackrel{O}{\longrightarrow}$ NH $\stackrel{R}{\longrightarrow}$ OH \longrightarrow

disaccharides or polysaccharides → monosaccharides

fats and oils → fatty acids + glycerol

Stage II: Acetyl CoA

Biomolecules are further degraded into acetyl groups.

Acetyl CoA is carried into the common catabolic pathway (Citric Acid Cycle, Electron Transport, Oxidative Phosphorylation)

AMP, ADP, ATP

<u>adenosine monophosphate (AMP):</u> one phosphate <u>adenosine diphosphate (ADP)</u>: two phosphates <u>adenosine triphosphate (ATP):</u> three phosphates

Hydrolysis of AMP, ADP, ATP

A single ATP molecule can be recycled 1000-15000 times per day, as it cannot be stored.

NAD⁺ and FAD

Coenzymes with an ADP core transfer electrons in biological oxidation-reduction (redox) reactions.

NAD*: nicotinamide adenine dinucleotide

<u>FAD</u>: flavin adenine dinucleotide

Redox Forms

$$NAD^{+} + H^{+} + 2e^{-} \longrightarrow NADH$$

NAD⁺ and FAD are called "hydrogen ion" and "electron-transporting" molecules.

FAD FADH₂

Redox Activity

