

Chapter 13 Carbohydrate Metabolism

Metabolism of Foods

Food is broken
down into
carbohydrates,
lipids, and
proteins and sent
through catabolic
pathways to
produce energy.

Glycolysis

Glycolysis

glucose + 2 P_i + 2 ADP + 2 NAD+ \rightarrow 2 pyruvate + 2 ATP + 2 NADH + 4 H^+ + 2 H_2 O

Ten-step pathway

Net Gain: 2 mols ATP per 1 mol glucose

Step 1: Phosphorylation to G6P

A phosphate group from ATP transfers to glucose.

Catalyzed by hexokinase/glucokinase.

Step 1 serves to keep the concentration of glucose low. G6P traps the glucose.

Step 2: Isomerization to F6P

G6P isomerizes to fructose-6-phosphate (F6P).

Catalyzed by phosphoglucose isomerase. Reaction is fully reversible.

Step 3: Phosphorylation to FBP

A second ATP molecule enters and transfers a phosphate group to fructose-1,6-bisphosphate (FBP).

Catalyzed by phosphofructokinase.
Inhibited by high concentrations of ATP and citrate; activated by high concentrations of ADP and AMP.

Step 4: Cleavage to DHAP and GADP

FBP (six carbons) is cleaved into two trioses.

Catalyzed by fructose biphosphate aldolase (ALDO).

DHAP can convert to GADP.

Step 5: Oxidation to 1,3-BPG

GAP is oxidized to 1,3-bisphosphoglycerate (1,3-BPG). A second inorganic phosphate is added.

$$^{2-}O_3P$$
 OH + NAD+ + P_i $^{2-}O_3P$ OH + NAD+ NADH glyceraldehyde 3-phosphate (GADP) 1,3-bisphosphoglycerate (1,3-BPG)

Catalyzed by glyceraldehyde phosphate dehydrogenase (GAPDH).

Step 6: Transfer of Phosphate

The phosphate on the carboxyl group is transferred to an ADP molecule.

$$^{2-}O_3P$$
 OH + ADP $^{2-}O_3P$ OH + ATP $^{2-}O_3P$ OH + ATP $^{2-}O_3P$ OH $^$

Catalyzed by phosphoglycerate kinase (PGK).

Step 7: Isomerization to 2PG

3PG is isomerized to 2-phosphoglycerate (2PG).

Catalyzed by phosphoglycerate mutase (PGM).

Step 8: Dehydration to PEP

PGM is dehydrated to remove the alcohol to form phosphoenolpyruvate (PEP).

HO
$$PO_3^{2-}$$
 $-H_2O$
 PO_3^{2-}
2-phosphoglycerate (2PG)
 PO_3^{2-}
 PO_3^{2-}
 PO_3^{2-}
 PO_3^{2-}

Catalyzed by enolase.

Step 9: Removal of Phosphate

Phosphoenolpyruvate loses its last phosphate.

Catalyzed by pyruvate kinase (PK) and regulated by the ratio of ADP/ATP present.

Pyruvate tautomerizes to pyruvic acid.

Fate of Pyruvate

Alcoholic fermentation produces ethanol and CO₂.

$$O$$
 + NADH \longrightarrow CO_2 + OH + NAD+ pyruvic acid carbon dioxide ethanol

Homolactic fermentation produces lactate.

$$O$$
 + NADH \rightarrow OH + NAD+ pyruvic acid

Summary of Glycolysis

Overall Reaction:

```
D-glucose + 2 NAD<sup>+</sup> + 2 ADP + 2 P<sub>i</sub> \rightarrow 2 pyruvate + 2 NADH + 2 H<sup>+</sup> + 2 ATP
```

Energy Gain (per glucose):

- 2 NADH + 2 H + 2 ATP
- Other monosaccharides (fructose, galactose) can enter the glycolysis pathway at intermediary points.
- Occurs in nearly all living organisms.
- Produces pyruvate.

Energy Yield from Glycolysis

Activation (Steps 1-3)

- 2 ATP

Phosphorylation (Step 5)

+ 4 ATP (from 2 NADH + H +)

Dephosphorylation (Steps 6, 9)

+ 4 ATP

TOTAL (cycle):

6 ATP/1 glucose

Oxidative Phosphorylation

Oxidative phosphorylation produces acetyl CoA.

$$O$$
 + NAD+ + CoA O + CO₂ + NADH + H+ CoA acetyl CoA carbon dioxide

Energy Gain: 2 ATP per pyruvate (from NADH + H+)

TOTAL: 4 ATP/1 glucose (2 pyruvate/1 glucose)

The Citric Acid Cycle

Preliminary Stages

The Citric Acid Cycle (tricarboxylic TAC, Krebs) converts food into carbon dioxide, water, and usable energy.

Catabolically-generated acetyl groups are added to CoA, making acetyl-CoA to begin the cycle.

Acetyl CoA + 3 NAD+ + FAD + GDP +
$$P_i$$
 + 2 $H_2O \rightarrow$ 2 CO_2 + CoA-S-H + 3 NADH + 2 H^+ + FAD H_2 + GTP

Step 1: Synthesis of Citrate

Acetyl-CoA (2 C) adds to oxaloacetate (4 C) to generate citryl CoA (6 C).

A hydrolysis reaction regenerates free CoA.

CoA
$$+ H_2O$$
 OH O $+ HS$ —CoA citrate

Step 2: Isomerization to Isocitrate

Citrate is dehydrated.

cis-aconitate is re-hydrated.

Step 3: Oxidative Decarboxylation

Isocitrate is oxidized by NAD⁺.

Oxalosuccinate is decarboxylated.

Step 4/5: Oxidative Decarboxylation

A complex system removes another equivalent of CO_2 from α -ketoglutarate.

The decarboxylation of α -ketoglutarate is complex. GTP is another energy-storage molecule (guanine replaces adenine).

The CO₂ produced in Step 3 and Step 4/5 is exhaled.

Step 6: Oxidation to Fumarate

Succinate (4 C) is oxidized by FAD. The double bond form is the *trans* isomer.

Succinate dehydrogenase catalyzes the reaction. FAD is reduced to FADH₂.

Step 7: Hydration to Malate

The double bond in fumarate is hydrolyzed.

$$H_2O$$
 H_2O H_2O H_2O H_3 malate

Fumarase catalyzes the hydrolysis.

Step 8: Oxidation to Oxaloacetate

NAD⁺ oxidizes the alcohol on malate to a ketone.

Oxaloacetate is generated and can begin Step 1 in the Citric Acid Cycle again.

Summary of the Citric Acid Cycle

Overall Reaction:

```
Acetyl CoA + 3 NAD+ + FAD + GDP + P_i + 2 H_2O \rightarrow 2 CO_2 + CoA-S-H + 3 NADH + 2 H^+ + FADH_2 + GTP
```

Energy Gain (per glucose):

- 8 NADH (pyruvate)
- 6 CO₂ (pyruvate)
- 2 ATP (GTP)
- 2 FADH₂
- 1 glucose = 2 pyruvate (glycolysis) = 2 acetyl CoA
- Oxaloacetate (4 carbons) adds an acetyl group (2 carbons) from acetyl CoA, then loses 2 CO₂ molecules (2 carbons) to regenerate oxaloacetate (4 carbons).

Energy Yield from Citric Acid Cycle

Pyruvate Oxidation (prior)

 $(from 1 NADH + H^+)$

+ 2 ATP

Decarboxylation (Steps 3-5)

+ 5 ATP

Oxidation (Steps 6, 8)

(from 1 GTP, 2 NADH + H^+)

+ 5 ATP

(from $FADH_2$, $NADH + H^+$)

TOTAL (cycle):

12 ATP /1 pyruvate

TOTAL (overall):

24 ATP/1 glucose

Electron Transport

When H⁺, electrons, and oxygen are combined, water and energy are produced.

 $4 \text{ H}^+ + 4 \text{ e}^- + \text{O}_2 \rightarrow 2 \text{ H}_2\text{O} + \text{energy}$

NADH and FADH₂ carry
H⁺ and e⁻ to the
mitochondria in a cell
to be combined with
O₂ inhaled via the
respiratory system to
produce energy.

Summary of Electron Transport Chain

The H⁺ move through proton-translocating ATPase which catalyzes the conversion of ADP to ATP and H₂O.

NADH and FADH₂ are oxidized back to NAD⁺ and FAD respectively so that they can go back to participating in the citric acid cycle.

Energy is provided to convert ADP to ATP.

Energy Production

From the citric acid cycle:

1 acetyl group = 3 NADH + 1 FADH₂ + 1 GTP (equivalent with ATP in energy production)

From the electron transport chain:

$$1 \text{ FADH}_2 = 4 \text{ protons} = 2 \text{ ATP}$$

In total:

$$C_2 + 2 O_2 + 12 ADP + 12 P_i \rightarrow 12 ATP + 2 CO_2$$

Glucose Metabolism

Glycolysis

Activation - 2 ATP

Phosphorylation + 2 NADH

Dephosphorylation + 4 ATP

Pyruvate Synthesis

Oxidation + 2 NADH

Citric Acid Cycle

Oxidation + 2 NADH

Decarboxylation + 2 GTP, 2 NADH

Oxidation + 2 FADH₂, 2 NADH

Electron Transport Chain

- 10 NADH + 25 ATP

- 2 FADH₂ + 3 ATP

FOTAL: + 32 ATP/1 mol glucose

Energy Efficiency

Glucose oxidation:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + H_2O$$

 $\Delta G = -686 \text{ kcal/mol}$

ATP synthesis:

32 ADP + 32 P_i
$$\rightarrow$$
 32 ATP + 32 H₂O
 Δ G = + 234 kcal/mol

Efficiency:

 $(234 \text{ kcal}/686 \text{ kcal}) \times 100 = 34.1 \% \text{ efficient}$