

Chapter 8: Lipids

Functions of Lipids

- Storage

Fats are long term energy (9 kcal/g) while carbohydrates are quick energy (4 kcal/g).

- Membrane Components

Lipid barriers keep water out.

- Messengers

Hormones process signals.

Classifications

Structure of Lipids

Fatty Acids: long-chain carboxylic acids

oleic acid: cis-octadecanoic acid, C₁₈H₃₄O₂

palmitic acid: hexadecanoic acid, C₁₆H₃₂O₂

Always in even numbers.

ÔН

Micelles

<u>Micelle</u>: spherical cluster of molecules

casein in milk

drug carriers

Saturation and Unsaturation

<u>saturated</u>: maximum number of hydrogens

- labeled "fats"
- considered "less" healthy
- higher m.p.

<u>unsaturated</u>: fewer than the maximum number of hydrogens

- labeled "oils"
- considered "more" healthy
- lower m.p.

Fats and Oils

At room temperature, animal fats are typically solids while oils are liquids.

Polyunsaturated fat: more than one double bond per fatty acid

In general, melting point increases with:

- saturation
- increasing molecular weight

Triglycerides

<u>Triglyceride</u>: triesters of glycerol (alcohol) and fatty acids (carboxylic acid)

1,2,3-propanetriol, "glycerol"

triglyceride

Some monoglycerides and diglycerides exist.

Physical Properties

Triglycerides are hydrophobic, making them insoluble in water.

Left: Immiscible lipid and water mixture. Right: Adding bile salts (ionic compounds) allows them to dissolve in water.

Hydrolysis

<u>Hydrolysis (lipolysis)</u>: addition of water to split an ester in acidic conditions

Opposite of esterification

triglyceride

Takes place during:

- digestion
- breakdown after storage

Saponification

Saponification: splitting esters in basic conditions NOT the opposite of esterification.

Base must be added in stoichiometric amounts. Reaction is *irreversible*.

Soaps

hard soap: made with NaOH, sodium carboxylates

<u>soft soap</u>: made with KOH, potassium carboxylates

Hydrogenation

<u>Hydrogenation</u>: adding H₂ with a metal catalyst

Hydrogenation increases a fat's solidity.

Partial hydrogenation changes the consistency to softer, malleable solids but also produces trans fats.

Waxes

wax: ester of fatty acids and long-chain alcohols

Waxes are:

- insoluble in water
- not easily hydrolyzed
- used as protective coatings

Classifications

Lipid Bilayer

lipid bilayer: outer membrane

Hydrophilic ends point *outward*. **Hydrophobic** ends point *inward*.

Saturated lipids only

Mixed saturated and unsaturated

Monounsaturated

Fluid Mosaic Model

<u>fluid mosaic model</u>: Free, lateral motion of the bilayers makes membranes "liquid-like" to allow transport through it

Phosphoglycerides

<u>phosphoglycerides</u>: triester of glycerol with two fatty acids and one phosphoric acid linked to an aminoalcohol

The aminoalcohol can be:

- choline (lecithins)
- ethanolamine (cephalins)
- serine (cephalins)

Sphingolipids

sphingolipids: contain sphingosine instead of glycerol

Classifications

Steroids

<u>steroid</u>: Contain 3 cyclohexane (phenathrene) and 1 cyclopentane fused together

 $C_{17}H_{28}$, cyclopentaphenanthrene

gonane: simplest steroid, contains only core structure

Steroids differ by the number of methyl and functional groups attached to the core structure.

Cholesterol

<u>cholesterol</u>: most abundant steroid in the human body, builds and maintains membranes

In a day, 1000-mg cholesterol is made to keep a total body ₊ content of 35-g.

Typical daily cholesterol intake is 200-300 mg.

.""Н

н

Ē

HDL vs. LDL

HDL has a high ratio of protein to cholesterol. It moves cholesterol to the liver and is considered "good".

LDL has a low ratio of protein to cholesterol. It moves cholesterol to artery walls and is considered "bad".

HDL vs. LDL

Recommended levels of HDL, LDL, and total cholesterol

HDL Good Cholesterol	LDL Bad Cholesterol	Total Cholesterol
Below 40	Above 160	Above 240
41 - 59	130 - 159	200 - 239
Above 60	Below 129	Below 200
mg/dl	mg/dl	mg/dl
	HDL Good Cholesterol Below 40 41 - 59 Above 60 mg/dl	HDL Good CholesterolLDL Bad CholesterolBelow 40Above 16041 - 59130 - 159Above 60Below 129mg/dlmg/dl

High LDL and low LDL are considered "desirable".

Heart Disease

Hormones

Progesterone

Progesterone is produced in the ovaries, adrenal glands, and the placenta as one of the "female" sex hormones.

It has been commercially synthesized from diosgenin.

<u>estradiol</u>: female sex hormone generated from the aromatization of the A ring in testosterone.

Testosterone

<u>testosterone</u>: promotes maturation of male characteristics

Testosterone promotes *anabolic effects*, including growth of muscle mass, increased bone density, and stimulation of linear growth and bone maturation.

Anabolic steroids cause muscle fibers to become larger and repair more quickly than normal

Glutocorticoids

<u>glucocorticoids</u>: control carbohydrate metabolism and control inflammation and the immune system.

<u>cortisol</u>: released due to stress to increase blood sugar levels by converting fatty acids and amino acids in the liver to glucose.

<u>cortisone</u>: oxidized ketone derivative of cortisol

Classifications

Prostaglandins

<u>prostaglandin</u>: fatty acid synthesized from arachidonic acid

Induce labor, lower blood pressure, relaxes muscles, inflames tissue around injuries.

<u>thromboxane</u>: ring is a cyclic acetal
Induces platelet aggregation to start blood clotting.

<u>leukotriene</u>: oxidized arachdionic acid, without ring closure

Occur mainly in white blood cells to produce long-lasting muscle contractions, inflammation, and fever.

