
Chapter 9: Proteins

Molecular Biology

general transfer: occurs normally in cells

special transfer: occurs only in the laboratory in specific conditions

<u>unknown transfer</u>: never known to occur

Proteins

protein: information-carrying biopolymer

biopolymer: biomolecule made of many parts

Proteins are composed of long chains of amino acids in a precise sequence.

Proteins are used for:

- Structure of bodies
- Catalysis of reactions
- Movement of muscle tissue
- Transport of metals or other elements
- Hormones to move information
- Storage of energy
- Regulation of gene expression

Amino Acids

amino acid: an amine, a carboxylic acid, and a side chain

<u>alpha amino acid</u>: amine – carbon – carboxylic acid

There are 20 common amino acids, 10 of which are classified as "essential".

Ionization

Amino acids are always ionized.

$$H_2N$$
 + OOH H_2N OOH H_3N OOH H_3N OOH OOH

<u>zwitterion</u>: contains charges but is overall neutral.

At pH = 2 (acidic):

$$H_{3}$$
 R H_{3} H_{3}

At pH = 10 (basic):

Amphiprotism

<u>isoelectric point (pl)</u>: the pH at which positive charges = negative charges

For most amino acids: around pH = 6.

$$H_2O$$
 + H_2O \longrightarrow H_3O^+ + OH^- acid base conjugate conjugate acid base

Stereochemistry

The α -carbon is always a **stereocenter** (with two exceptions).

All amino acids exhibit S-stereochemistry, except for glycine (no stereocenter) and cysteine (R-isomer).

Abbreviations

Amino acids are classified by "R" – the organic group bonded to the α -carbon.

Abbreviations are three- and one-letter, usually derived from the name.

Protein structures use line-angle drawings or letter abbreviations.

The List

NAME	3-LETTER	1-LETTER	NAME	3-LETTER	1-LETTER
Alanine	Ala	Α	Methionine	Met	M
Cysteine	Cys	С	Asparagine	Asn	N
Aspartic Acid	Asp	D	Proline	Pro	P
Glutamic Acid	Glu	E	Glutamine	Gln	Q
Phenylalanine	Phe	F	Arginine	Arg	R
Glycine	Gly	G	Serine	Ser	S
Histidine	His	Н	Threonine	Thr	Т
Isoleucine	lle	I	Valine	Val	V
Lysine	Lys	K	Tryptophan	Trp	W
Leucine	Leu	L	Tyrosine	Tyr	Y

^{*} Non-intuitive abbreviations

Categories

Amino acids are categorized by their side chains' structural properties and chemical behavior.

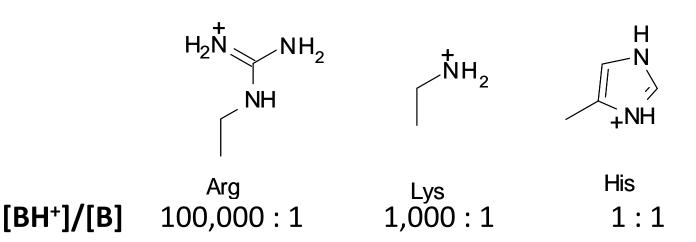
- > acidic: contains either carboxylic acid or phenol
- **basic**: contains amine
- > aromatic: contains aromatic groups
- > aliphatic : comprised of alkyl chains
- > polar: contains an amide or alcohol
- > sulfur: contains a thiol or sulfide
- > twisty: flexible/inflexible

Acidic Amino Acids

Contain either a carboxylic acid or a phenol.

With a pKa = 5, at pH = 7 aspartame and glutamate dominate 100 to 1.

At pH = 7 (blood stream):


$$\begin{array}{c}
OH \\
R
\end{array}$$
 $\begin{array}{c}
O^{-} \\
R
\end{array}$

Tyrosine has a pKa = 10, thus is found primarily in the protonated phenol structure.

Basic Amino Acids

Contain an amine group in their side chain.

Only certain amine groups in arginine and histidine are protonated.

Aromatic Amino Acids

Contain aromatic rings.

$$H_2N$$
 H_2N
 H_2N

The aromatic systems allow transfer of charge (electrons) and use as neurotransmitters.

Aromatic amino acids are also classified as nonpolar with hydrophobic ends (the side chains).

Aliphatic Amino Acids

Contain alkyl side chains.

$$H_2N$$
 H_2N
 H_2N

All aliphatic amino acids are nonpolar.

Alkyl side chains are very stable and therefore mostly unreactive.

Polar Amino Acids

Contain either amide or alcohol functional groups.

Alcohols and amides can behave as hydrogenbond acceptors and donors.

Sulfur Amino Acids

Contain a thiol or a sulfide.

They are also classified as nonpolar.

Twisty Amino Acids

Twisty amino acids do not follow the basic structure.

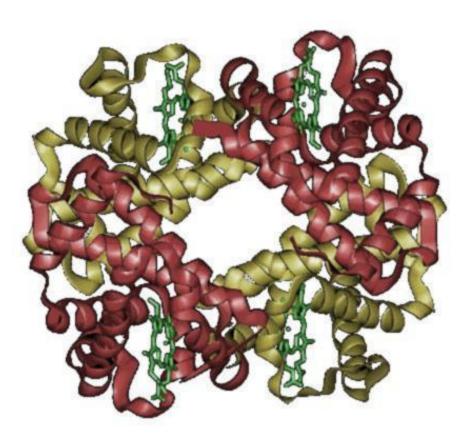
- glycine: has two hydrogens as its side chain (no side chain)
- proline: its side chain contains the amine group in the backbone

Classifying Amino Acids

Classify the following amino acids as as (1) acidic, (2) basic, (3) aromatic, (4) aliphatic, (5) polar and/or (6) nonpolar. Some may be classified multiple ways.

Proteins

Amino acids combine by forming linking amides.

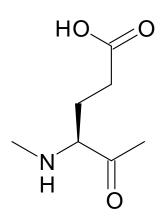

- "dehydration"

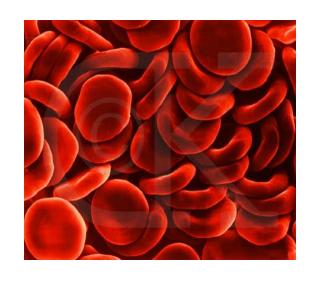
$$H_2N$$
 H_2N
 H_2N

Note that:

- Water is lost.
- •All stereochemistry is maintained.
- •The carbonyls and the R groups alternate.

Hemoglobin


hemoglobin: protein responsible for oxygen transport.


Consists of four separate polypeptide chains: two of a-hemoglobin (141 amino acids) and two of b-hemoglobin (146 amino acids).

Sickle Cell Anemia

Healthy Hemoglobin

Contains glutamic acid/glutamate.



Val-His-Leu-Thr-ProGlu-Glu-Lys-Ser-Ala...

Mutated Hemoglobin

Contains valine.

$$H_2N$$

Order of Proteins

Amino acids must always be in a precise order for the protein to function.

For a <u>dipeptide</u> (protein consisting of two amino acids), there are 20² or 400 possible combinations.

For a <u>tripeptide</u> (protein consisting of three amino acids), there are 20³ or 8,000 possible combinations.

Most biological proteins contain on average 60 amino acid "residues" (polypeptide), leading to 20^{60} or $6.4x10^7$ possible combinations.

Primary Structure

> primary structure: order of amino acids

Amino acids are *always* read from the N-terminus to the C-terminus.

Always write the N-terminus on the *left* so that the amino acid order is correct.

Kyotorphin

kyotorphin: Dipeptide responsible for pain regulation in the brain.

What's changed:

- •N and C terminals have switched.
- Stereochemistry has inverted.
- •H-bonding on the backbone has swapped.

Hydrogen Bonding

The folding of a protein can be precisely ordered if it can bend in such a way to allow hydrogen bonding between the amide functional groups.

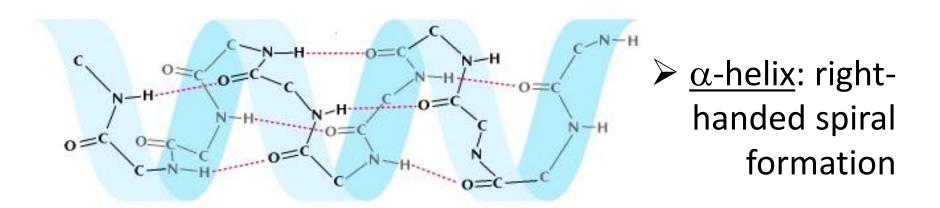
Primary Structure

Consider the following protein.

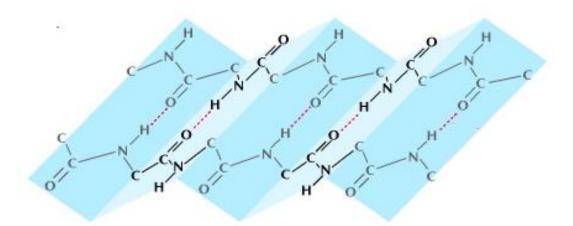
HS

H

O

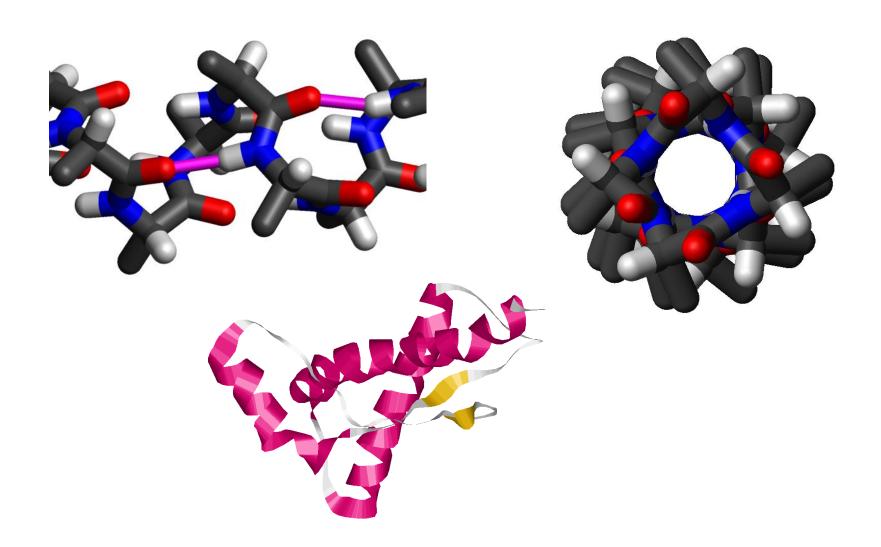

(1) Identify the N- and C-terminus.

(2) Locate all peptide bonds.


- (3) Count the amino acids.
- (4) Classify each amino acid.

Secondary Structures

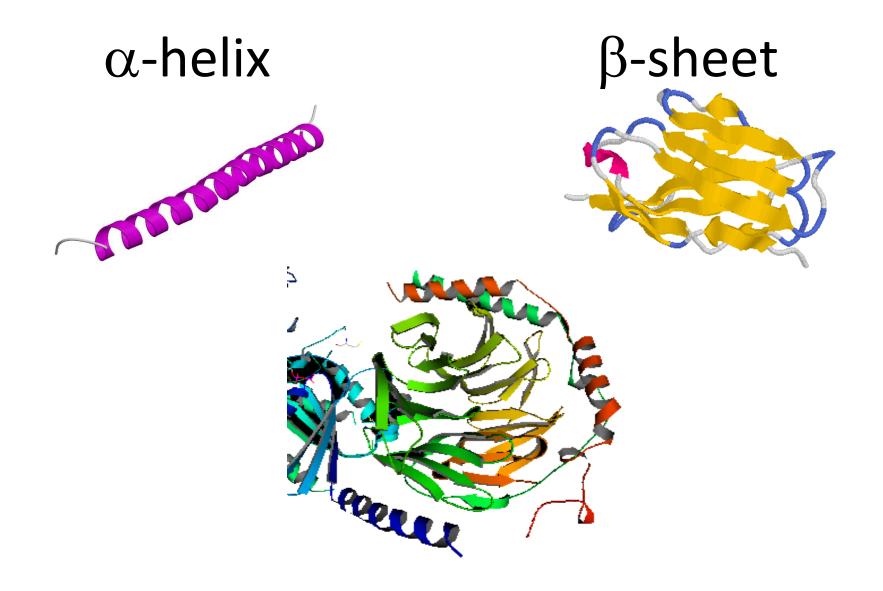
<u>secondary</u> structure: hydrogen bonding on the backbone



 \triangleright β -sheet: strands forming into a long sheet

The α -Helix

Every fourth C=O can bond to an N-H to create a spiral.



The β-sheet

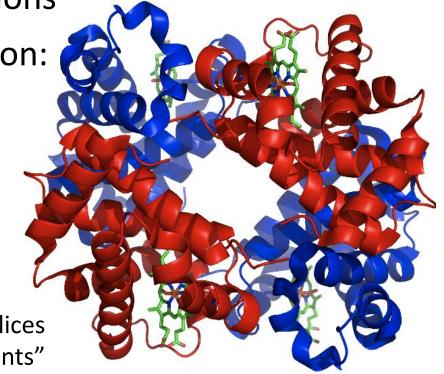
β-sheets can be either *parallel* or *anti-parallel*. <u>parallel</u>: side chains point in the same direction (all up or all down)

<u>antiparallel</u>: side chains point in opposite directions (one line up, next line down)

Secondary Structures

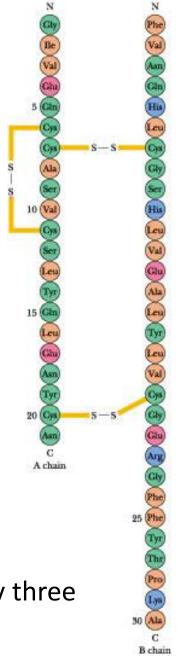
Tertiary & Quaternary Structures

<u>tertiary structure</u>: formed by interactions between protein's secondary structures

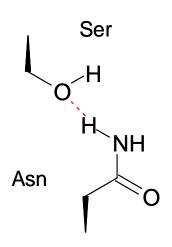

quaternary structure: multiple secondary structures'

interactions

Due to five sources of stabilization:

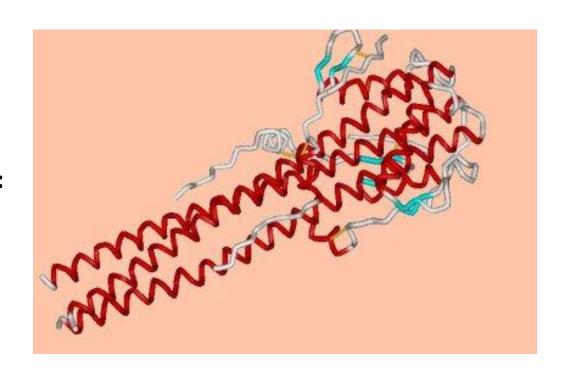

- Covalent Bonds
- Hydrogen Bonding
- Salt Bridges
- Metal Ion Coordination
- Hydrophobic Interactions

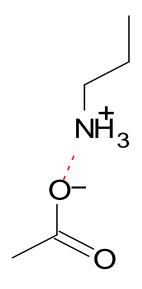
Hemoglobin: contains four α -helices in "quadrants"


Covalent Bonds

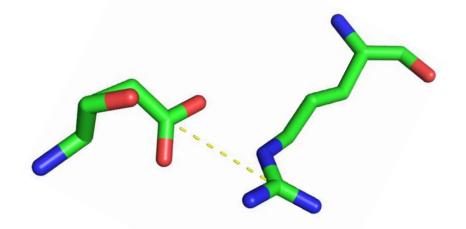
In the presence of oxygen, adjacent cysteines will oxidize their thiol groups to a disulfide.

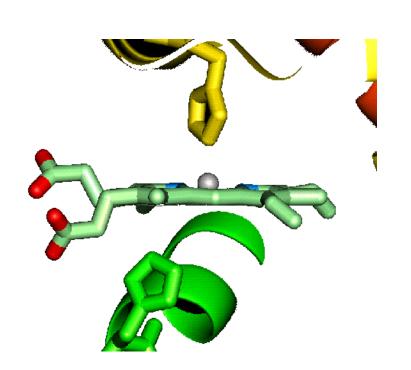
Insulin: held together by three disulfide cross-bridges


Hydrogen Bonding


Adjacent hydrogen bond donors and acceptors can form interactions.

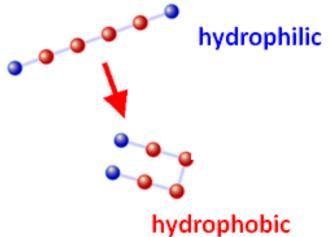
Human chorionic gonadotropin:


Hormone most commonly detected by pregnancy tests


Salt Bridges

Since acidic side chains are mostly carboxylates and basic side chains are mostly ammoniums, the opposite charges form ionic interactions.

Metallic Ion Coordination



Charged salts on the sidechains can also interact with metal ions, such as Mg²⁺ or Fe²⁺

In hemoglobin, the heme form of Fe(II) is placed within the protein to move through the bloodstream.

Hydrophobic Interactions

Amino acid side chains are either *hydrophilic* or *hydrophobic*.

The peptide will fold itself to bend its hydrophilic side chains outside and its hydrophobic chains inside, just like oil droplets in water.

Tertiary Structures

What interactions would hold together:

(1) aspartic acid and arginine?

$$\begin{array}{c|c} O & & O \\ \hline O & & O \\ OH & NH_2 \end{array}$$

(2) cystine and cystine?

(3) isoleucine and leucine?

(4) asparagine and serine?

 $\bar{N}H_2$

$$H_2N$$
 OH